【題目】A、B、C為數(shù)軸上的三點(diǎn),動(dòng)點(diǎn)A、B同時(shí)從原點(diǎn)出發(fā),動(dòng)點(diǎn)A每秒運(yùn)動(dòng)x個(gè)單位,動(dòng)點(diǎn)B每秒運(yùn)動(dòng)y個(gè)單位,且動(dòng)點(diǎn)A運(yùn)動(dòng)到的位置對(duì)應(yīng)的數(shù)記為a,動(dòng)點(diǎn)B運(yùn)動(dòng)到的位置對(duì)應(yīng)的數(shù)記為b,定點(diǎn)C對(duì)應(yīng)的數(shù)為8.
(1)若2秒后,a、b滿足|a+8|+|b﹣2|=0,則x= ,y= .并請(qǐng)?jiān)跀?shù)軸上標(biāo)出A、B兩點(diǎn)的位置.
(2)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上保持原來的速度,且同時(shí)向正方向運(yùn)動(dòng)z秒后使得|a|=|b|,使得z= .
(3)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上都以每秒2個(gè)單位向正方向運(yùn)動(dòng)繼續(xù)運(yùn)動(dòng)t秒,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離為AB,且AC+BC=1.5AB,則t= .
【答案】(1)4,1,圖詳見解析;(2)或;(3)或.
【解析】
(1)∵|a+8|+(b﹣2)2=0,
∴a+8=0,b﹣2=0,即a=﹣8,b=2,
則x=|﹣8|÷2=4,y=2÷2=1,
在數(shù)軸上標(biāo)出A、B兩點(diǎn)的位置如下圖所示:
故答案為:4,1;
(2)∵動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上保持原來的速度,且同時(shí)向正方向運(yùn)動(dòng)z秒后,
∴a=﹣8+4z,b=2+z.
∵|a|=|b|,
∴|﹣8+4z|=|2+z|,
∴﹣8+4z+2+z=0或﹣8+4z=2+z
解得:z=或z=.
故答案為:或;
(3)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上都以每秒2個(gè)單位向正方向運(yùn)動(dòng)繼續(xù)運(yùn)動(dòng)t秒后,
則點(diǎn)A表示:﹣8+2t,點(diǎn)B表示:2+2t,點(diǎn)C表示:8,
∴AC=|﹣8+2t﹣8|=|2t﹣16|,BC=|2+2t﹣8|=|2t﹣6|,AB=|﹣8+2t﹣(2+2t)|=10.
∵AC+BC=1.5AB,
∴|2t﹣16|+|2t﹣6|=1.5×10,
分三種情況討論:
①當(dāng)t≤3時(shí),
16-2t+6-2t=15,
解得:t=;
②當(dāng)3<t≤8時(shí),
16-2t+2t-6=10≠15
方程無解;
③當(dāng)t>8時(shí),
2t-16+2t-6=15
解得:t=.
綜上所述:t=或t=.
故答案為:或 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E.過點(diǎn)D作DF⊥AC交AC于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若⊙O的半徑為8,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有A、B、C、D四個(gè)點(diǎn),且線段AB=4,CD=6,已知A表示的數(shù)是﹣10,C表示的數(shù)是8,若線段AB以每秒6個(gè)單位長(zhǎng)度的速度,線段CD以每秒2個(gè)單位長(zhǎng)度的速度在數(shù)軸上運(yùn)動(dòng)(A在B左側(cè),C在D左側(cè))
(1)B,D兩點(diǎn)所表示的數(shù)分別是 、 ;
(2)若線段AB向右運(yùn)動(dòng),同時(shí)線段CD向左運(yùn)動(dòng),經(jīng)過多少秒時(shí),BC=2;
(3)若線段AB、CD同時(shí)向右運(yùn)動(dòng),同時(shí)點(diǎn)P從原點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),經(jīng)過多少秒時(shí),點(diǎn)P到點(diǎn)A,C的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店有一臺(tái)不準(zhǔn)確的天平(其臂長(zhǎng)不等)及砝碼.某顧客要購買糖果,售貨員先將砝碼放于左盤,置一些糖果于右盤,使之平衡后給顧客;又將砝碼放于右盤,另置糖果于左盤,平衡后再倒給顧客,這種稱法是否合理?[提示:當(dāng)天平(不準(zhǔn)確)平衡后,所掛重物與臂長(zhǎng)成反比].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B在同一條直線上,OD、OE分別平分∠AOC和∠BOC.(1)求∠DOE的度數(shù);(2)如果∠COD=65°,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:
根據(jù)圖中提供的信息,解答下列問題:
(1)補(bǔ)全頻數(shù)分布直方圖
(2)求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)
(3)請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡(jiǎn),再求值: x﹣2(x﹣y2)+(﹣2x+y2),其中x=2,y=﹣3
(2)已知:若a,b互為相反數(shù),c,d互為倒數(shù),m的絕對(duì)值為最小正整數(shù),求代數(shù)式﹣2cd+﹣m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察一組數(shù)據(jù):2,4,7,11,16,22,29,…,它們有一定的規(guī)律,若記第一個(gè)數(shù)為a1,第二個(gè)數(shù)記為a2,…,第n個(gè)數(shù)記為an.
(1)請(qǐng)寫出29后面的第一個(gè)數(shù);
(2)通過計(jì)算a2-a1,a3-a2,a4-a3,…由此推算a100-a99的值;
(3)根據(jù)你發(fā)現(xiàn)的規(guī)律求a100的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于點(diǎn)E,F(xiàn)是AB的中點(diǎn),聯(lián)結(jié)AE、EF,且AE⊥BE.
求證:(1)四邊形BCEF是菱形;
(2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com