【題目】(1)先化簡,再求值: x﹣2(x﹣y2)+(﹣2x+y2),其中x=2,y=﹣3
(2)已知:若a,b互為相反數(shù),c,d互為倒數(shù),m的絕對(duì)值為最小正整數(shù),求代數(shù)式﹣2cd+﹣m的值
【答案】(1)﹣3x+y2,3;(2)-3.
【解析】
(1)先去括號(hào),再合并同類項(xiàng),最后把已知數(shù)據(jù)代入求解即可;
(2)直接利用相反數(shù)、倒數(shù)、絕對(duì)值的性質(zhì)分別得出a、b、c、d的值,然后代入求值即可.
解:(1)x﹣2(x﹣y2)+(﹣2x+y2)
=x﹣2x+y2﹣2x+y2
=﹣3x+y2,
把x=2,y=﹣3代入得:
原式=﹣6+9=3;
(2)∵a,b互為相反數(shù),c,d互為倒數(shù),m的絕對(duì)值為最小正整數(shù),
∴a+b=0,cd=1,m=±1,
當(dāng)m=﹣1時(shí),
∴﹣2cd+﹣m
=﹣2+0+1
=﹣1;
當(dāng)m=1時(shí),
∴﹣2cd+﹣m
=﹣2+0﹣1
=﹣3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)玩“托球賽跑”游戲,商定:用球拍托著乒乓球從起跑線起跑,繞過點(diǎn)跑回到起跑線(如圖所示);途中乒乓球掉下時(shí)須撿起并回到掉球處繼續(xù)賽跑,用時(shí)少者勝.結(jié)果甲同學(xué)由于心急掉了球,浪費(fèi)了6秒鐘,乙同學(xué)則順利跑完.事后,甲同學(xué)說我倆所用的全部時(shí)間的和為50秒”,乙同學(xué)說撿球過程不算在內(nèi)時(shí),甲的速度是我的1.2倍.”根據(jù)圖文信息,請(qǐng)問甲同學(xué)的速度是______米/秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)學(xué)生某科目期末評(píng)價(jià)成績是由完成作業(yè)、單元檢測(cè)、期末考試三項(xiàng)成績構(gòu)成的,如果期末評(píng)價(jià)成績80分以上(含80分),則評(píng)為“優(yōu)秀”.下面表中是小張和小王兩位同學(xué)的成績記錄:
完成作業(yè) | 單元測(cè)試 | 期末考試 | |
小張 | 70 | 90 | 80 |
小王 | 60 | 75 |
(1)若按三項(xiàng)成績的平均分記為期末評(píng)價(jià)成績,請(qǐng)計(jì)算小張的期末評(píng)價(jià)成績;
(2)若按完成作業(yè)、單元檢測(cè)、期末考試三項(xiàng)成績按的權(quán)重來確定期末評(píng)價(jià)成績.
①請(qǐng)計(jì)算小張的期末評(píng)價(jià)成績?yōu)槎嗌俜郑?/span>
②小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考多少分才能達(dá)到優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B、C為數(shù)軸上的三點(diǎn),動(dòng)點(diǎn)A、B同時(shí)從原點(diǎn)出發(fā),動(dòng)點(diǎn)A每秒運(yùn)動(dòng)x個(gè)單位,動(dòng)點(diǎn)B每秒運(yùn)動(dòng)y個(gè)單位,且動(dòng)點(diǎn)A運(yùn)動(dòng)到的位置對(duì)應(yīng)的數(shù)記為a,動(dòng)點(diǎn)B運(yùn)動(dòng)到的位置對(duì)應(yīng)的數(shù)記為b,定點(diǎn)C對(duì)應(yīng)的數(shù)為8.
(1)若2秒后,a、b滿足|a+8|+|b﹣2|=0,則x= ,y= .并請(qǐng)?jiān)跀?shù)軸上標(biāo)出A、B兩點(diǎn)的位置.
(2)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上保持原來的速度,且同時(shí)向正方向運(yùn)動(dòng)z秒后使得|a|=|b|,使得z= .
(3)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上都以每秒2個(gè)單位向正方向運(yùn)動(dòng)繼續(xù)運(yùn)動(dòng)t秒,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離為AB,且AC+BC=1.5AB,則t= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OA1B1C1,B1A2B2C2,B2A3B3C3,…的頂點(diǎn)B1,B2,B3,…在x軸上,頂點(diǎn)C1,C2,C3,…在直線y=kx+b上,若正方形OA1B1C1,B1A2B2C2的對(duì)角線OB1=2,B1B2=3,則點(diǎn)C3的縱坐標(biāo)是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的對(duì)角線AC、BD交于點(diǎn)O,點(diǎn)E、F分別在OC、OB上,且OE=OF.
(1)如圖1,若點(diǎn)E、F在線段OC、OB上,連接AF并延長交BE于點(diǎn)M,求證:AM⊥BE;
(2)如圖2,若點(diǎn)E、F在線段OC、OB的延長線上,連接EB并延長交AF于點(diǎn)M.
①∠AME的度數(shù)為 ;
②若正方形ABCD的邊長為3,且OC=3CE時(shí),求BM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一手機(jī)經(jīng)銷商計(jì)劃購進(jìn)某品牌的A型、B型、C型三款手機(jī)共60部,每款手機(jī)至少要購進(jìn)8部,且恰好用完購機(jī)款61000元.設(shè)購進(jìn)A型
手機(jī)x部,B型手機(jī)y部.三款手機(jī)的進(jìn)價(jià)和預(yù)售價(jià)如下表:
手機(jī)型號(hào) | A型 | B型 | C型 |
進(jìn) 價(jià)(單位:元/部) | 900 | 1200 | 1100 |
預(yù)售價(jià)(單位:元/部) | 1200 | 1600 | 1300 |
(1)用含x,y的式子表示購進(jìn)C型手機(jī)的部數(shù);
(2)求出y與x之間的函數(shù)關(guān)系式;
(3)假設(shè)所購進(jìn)手機(jī)全部售出,綜合考慮各種因素,該手機(jī)經(jīng)銷商在購銷這批手機(jī)過程中需另外支出各種費(fèi)用共1500元.
①求出預(yù)估利潤P(元)與x(部)的函數(shù)關(guān)系式;
(注:預(yù)估利潤P=預(yù)售總額-購機(jī)款-各種費(fèi)用)
②求出預(yù)估利潤的最大值,并寫出此時(shí)購進(jìn)三款手機(jī)各多少部.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=,點(diǎn)P在AC上運(yùn)動(dòng),點(diǎn)D在AB上,PD始終保持與PA相等,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.若AC=6,BC=8,PA=2,則線段DE的長為________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于兩點(diǎn),拋物線經(jīng)過兩點(diǎn),與軸交于另一點(diǎn).
(1)求拋物線解析式及點(diǎn)坐標(biāo);
(2)連接,求的面積;
(3)若點(diǎn)為拋物線上一動(dòng)點(diǎn),連接,當(dāng)點(diǎn)運(yùn)動(dòng)到某一位置時(shí),面積為的面積的倍,求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com