【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于兩點,拋物線經(jīng)過兩點,與軸交于另一點.
(1)求拋物線解析式及點坐標(biāo);
(2)連接,求的面積;
(3)若點為拋物線上一動點,連接,當(dāng)點運動到某一位置時,面積為的面積的倍,求此時點的坐標(biāo).
【答案】(1),;(2);(3)點的坐標(biāo)為, ,,見解析.
【解析】
(1)利用兩點是一次函數(shù)上的點求出兩點,再代入二次函數(shù)求解即可.
(2)根據(jù),求出,求出△ABC.
(3)根據(jù)面積為的面積的倍,求出,得出求出此時M的坐標(biāo)即可.
(1)解:∵直線
∴令,則,解得
∴
令,則,∴
將點,代入中得,
,解得
∴拋物線的解析式為:;
令,則,解得
∴.
(2)解:∵,∴
∴
(3)∵面積為的面積的倍,
∴
∵AB=4 ,
∴,
∵
∴拋物線的頂點坐標(biāo)為符合條件,
當(dāng)時,,解的,x1=,x
∴點的坐標(biāo)為(3,-4), ,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)先化簡,再求值: x﹣2(x﹣y2)+(﹣2x+y2),其中x=2,y=﹣3
(2)已知:若a,b互為相反數(shù),c,d互為倒數(shù),m的絕對值為最小正整數(shù),求代數(shù)式﹣2cd+﹣m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是張亮、李娜兩位同學(xué)零花錢全學(xué)期各項支出的統(tǒng)計圖.根據(jù)統(tǒng)計圖,下列對兩位同學(xué)購買書籍支出占全學(xué)期總支出的百分比作出的判斷中,正確的是( )
A. 張亮的百分比比李娜的百分比大 B. 張娜的百分比比張亮的百分比大
C. 張亮的百分比與李娜的百分比一樣大 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于點E,F(xiàn)是AB的中點,聯(lián)結(jié)AE、EF,且AE⊥BE.
求證:(1)四邊形BCEF是菱形;
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點C與點F重合時停止.設(shè)Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校中午學(xué)生用餐比較擁擠,為建議學(xué)校分年級錯時用餐,李老師帶領(lǐng)數(shù)學(xué)學(xué)習(xí)小組在某天隨機(jī)調(diào)查了部分學(xué)生,統(tǒng)計了他們從下課到就餐結(jié)束所用的時間,并繪制成統(tǒng)計表和如圖所示的不完整統(tǒng)計圖.
根據(jù)以上提供的信息,解答下列問題:
(1)表中a=_____,b=_____,c=_____,補全頻數(shù)分布直方圖;
(2)此次調(diào)查中,中位數(shù)所在的時間段是_____min.
時間分段/min | 頻(人)數(shù) | 百分比 |
10≤x<15 | 8 | 20% |
15≤x<20 | 14 | a |
20≤x<25 | 10 | 25% |
25≤x<30 | b | 12.50% |
30≤x<35 | 3 | 7.50% |
合計 | c | 100% |
(3)這所學(xué)校共有1200人,試估算從下課到就餐結(jié)束所用時間不少于20min的共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時間為標(biāo)準(zhǔn)分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).
請根據(jù)以上信息,解答下列問題:
(1)該汽車交易市場去年共交易二手轎車 輛.
(2)把這幅條形統(tǒng)計圖補充完整.(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù))
(3)在扇形統(tǒng)計圖中,D類二手轎車交易輛數(shù)所對應(yīng)扇形的圓心角為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:AB是⊙O的直徑,AC交⊙O于G,E是AG上一點,D為△BCE內(nèi)心,BE交AD于F,且∠DBE=∠BAD.
(1)求證:BC是⊙O的切線;
(2)求證:DF=DG;
(3)若∠ADG=45°,DF=1,則有兩個結(jié)論:①ADBD的值不變;②AD-BD的值不變,其中有且只有一個結(jié)論正確,請選擇正確的結(jié)論,證明并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=2x-7平移后的圖象l經(jīng)過點(-3,-2),
(1)求l的函數(shù)解析式;并畫出該函數(shù)的圖象;
(2)l與x軸交于點A,點P是l上一點,且S△AOP=,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com