【題目】蜂蜜具有消食、潤(rùn)肺、安神、美顏之功效,是天然的健康保健佳品.秋天即將來(lái)臨時(shí),雪寶山土特產(chǎn)公司抓住商機(jī)購(gòu)進(jìn)甲、乙、丙三種蜂蜜,已知銷(xiāo)售每瓶甲蜂蜜的利潤(rùn)率為10%,每瓶乙蜂蜜的利潤(rùn)率為20%,每瓶丙蜂蜜的利潤(rùn)率為30%.當(dāng)售出的甲、乙、丙蜂蜜瓶數(shù)之比為1:3:1時(shí),商人得到的總利潤(rùn)率為22%;當(dāng)售出的甲、乙、丙蜂蜜瓶數(shù)之比為3:2:1時(shí),商人得到的總利潤(rùn)率為20%.那么當(dāng)售出的甲、乙、丙蜂蜜瓶數(shù)之比為5:6:1時(shí),該公司得到的總利潤(rùn)率為_____.
【答案】19%
【解析】
設(shè)甲種蜂蜜每瓶x元,乙種蜂蜜每瓶y元,丙種蜂蜜每瓶z元,首先根據(jù)題中所給的兩種情況分別列式求出4z=3y+6x①和z=3x②,然后可得y=2x,最后列式求售出的甲、乙、丙蜂蜜瓶數(shù)之比為5:6:1時(shí)獲得的總利潤(rùn)即可.
解:設(shè)甲種蜂蜜每瓶x元,乙種蜂蜜每瓶y元,丙種蜂蜜每瓶z元,
當(dāng)售出的甲、乙、丙蜂蜜瓶數(shù)之比為1:3:1時(shí),設(shè)甲種蜂蜜賣(mài)出a瓶,
則:,整理得:4z=3y+6x①,
當(dāng)售出的甲、乙、丙蜂蜜瓶數(shù)之比為3:2:1時(shí),設(shè)丙種蜂蜜賣(mài)出b瓶,
則:,整理得:z=3x②,
由①②可得:y=2x,
∴當(dāng)售出的甲、乙、丙蜂蜜瓶數(shù)之比為5:6:1時(shí),設(shè)丙種蜂蜜賣(mài)出c瓶,
則該公司得到的總利潤(rùn)率為:,
故答案為:19%.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx過(guò)點(diǎn)B(1,﹣3),對(duì)稱(chēng)軸是直線x=2,且拋物線與x軸的正半軸交于點(diǎn)A.
(1)求拋物線的解析式,并根據(jù)圖象直接寫(xiě)出當(dāng)y≤0時(shí),自變量x的取值范圖;
(2)在第二象限內(nèi)的拋物線上有一點(diǎn)P,當(dāng)PA⊥BA時(shí),求△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形中,一射線分為與,且,交對(duì)角線于,交于,過(guò)作于點(diǎn),交于,且,
(1)求的度數(shù);
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,四邊形ABCD的對(duì)角線AC和BD相交于點(diǎn)E,AD=DC,DC2=DEDB,求證:
(1)△BCE∽△ADE;
(2)ABBC=BDBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:平行四邊形,對(duì)角線點(diǎn)P為射線BC上一點(diǎn),,(點(diǎn)M與點(diǎn)B分別在直線AP的兩側(cè)),且聯(lián)結(jié)MD.
(1)當(dāng)點(diǎn)M在內(nèi)時(shí),如圖一,設(shè)求關(guān)于的函數(shù)解析式.
(2)請(qǐng)?jiān)趫D二中畫(huà)出符合題意得示意圖,并探究:圖中是否存在與相似的三角形?若存在,請(qǐng)寫(xiě)出證明過(guò)程,若不存在,請(qǐng)說(shuō)明理由
(3)當(dāng)為等腰三角形時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,點(diǎn)E是BC邊上的中點(diǎn),過(guò)A作AF⊥CD,AE⊥EF.
(1)若∠B=60°,AE平分∠BAF,DF=4.求AE的長(zhǎng).
(2)求證:AB+CF=EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑作半圓O,點(diǎn)C是半圓上一點(diǎn),∠ABC的平分線交⊙O于E,D為BE延長(zhǎng)線上一點(diǎn),且∠DAE=∠FAE.
(1)求證:AD為⊙O切線;
(2)若sin∠BAC=,求tan∠AFO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線C1:y=ax2+k的頂點(diǎn)A(0,﹣2),且過(guò)點(diǎn)(2,0),點(diǎn)B的坐標(biāo)為(1,0),直線AB交拋物線C1于另一點(diǎn)C.
(1)拋物線的解析式為 ;
(2)求點(diǎn)C的坐標(biāo):
(3)如圖2,將拋物線C1向下平移m(m>0)個(gè)單位得到拋物線C,且拋物線C的頂點(diǎn)為P,交x軸負(fù)半軸于點(diǎn)M,交射線BC于點(diǎn)N,NQ⊥x軸于點(diǎn)Q,當(dāng)NP平分∠MNQ時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2-mx+c與x軸交于點(diǎn)A(x1,0)B(x2,0),與y軸交于點(diǎn)C(0,c).若△ABC為直角三角形,求c的值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com