【題目】已知拋物線y=x2-mx+c與x軸交于點A(x1,0)B(x2,0),與y軸交于點C(0,c).若△ABC為直角三角形,求c的值
【答案】.
【解析】
由△ACO∽△CBO可得OC2=OB·OA,由一元二次方程根據(jù)系數(shù)的關(guān)系可得x1·x2=2c,即OB·OA=-2c,從而可得c2+2c=0,解方程即可求出c的值.
解:∵△ABC為直角三角形,
∴∠ACB=90°,
∵∠ACO+∠BCO=90°,∠CBO+∠BCO=90°,
∴∠ACO=∠CBO,
∴△ACO∽△CBO,
∴,
∴OC2=OB·OA.
當(dāng)y=0時,x2-mx+c=0,
∴x1·x2=2c,
∴OB·OA=-2c.
∵C(0,c),
∴OC=-c,
∴(-c)2=-2c,
∴c2+2c=0,
∴c1=0(舍去),c2=-2.
∴c的值是-2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蜂蜜具有消食、潤肺、安神、美顏之功效,是天然的健康保健佳品.秋天即將來臨時,雪寶山土特產(chǎn)公司抓住商機購進甲、乙、丙三種蜂蜜,已知銷售每瓶甲蜂蜜的利潤率為10%,每瓶乙蜂蜜的利潤率為20%,每瓶丙蜂蜜的利潤率為30%.當(dāng)售出的甲、乙、丙蜂蜜瓶數(shù)之比為1:3:1時,商人得到的總利潤率為22%;當(dāng)售出的甲、乙、丙蜂蜜瓶數(shù)之比為3:2:1時,商人得到的總利潤率為20%.那么當(dāng)售出的甲、乙、丙蜂蜜瓶數(shù)之比為5:6:1時,該公司得到的總利潤率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙M經(jīng)過O點,并且與x軸、y軸分別交于A、B兩點,線段OA、OB(OA>OB)的長是方程的兩根.
(1)求線段OA、OB的長;
(2)若點C在劣弧OA上,連結(jié)BC交OA于D,當(dāng)OC2=CD·CB時,求點C的坐標(biāo);
(3)若點C在優(yōu)弧OA上,作直線BC交x軸于D,是否存在△COB和△CDO相似,若存在,求出點C的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場在促銷活動中規(guī)定,顧客每消費100元就能獲得一次抽獎機會.為了活躍氣氛,設(shè)計了兩個抽獎方案:
方案一:轉(zhuǎn)動轉(zhuǎn)盤A一次,轉(zhuǎn)出紅色可領(lǐng)取一份獎品;
方案二:轉(zhuǎn)動轉(zhuǎn)盤B兩次,兩次都轉(zhuǎn)出紅色可領(lǐng)取一份獎品.(兩個轉(zhuǎn)盤都被平均分成3份)如果你獲得一次抽獎機會,你會選擇哪個方案?請用相關(guān)的數(shù)學(xué)知識說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在Rt中,,點是斜邊的中點,,且,于點,聯(lián)結(jié).
(1)求證: ;
(2)當(dāng)時,求的值;
(3)在(2)的條件下,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線平移至△FEG,DE、FG相交于點H.
(1)判斷線段DE、FG的位置關(guān)系,并說明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)用配方法求出該函數(shù)圖象的頂點坐標(biāo)和對稱軸;
(2)在如圖所示的平面直角坐標(biāo)系中畫出該函數(shù)的大致圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有個填寫運算符號的游戲:在“”中的每個□內(nèi),填入中的某一個(可重復(fù)使用),然后計算結(jié)果.
(1)計算:;
(2)若請推算□內(nèi)的符號;
(3)在“”的□內(nèi)填入符號后,使計算所得數(shù)最小,直接寫出這個最小數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com