如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計(jì)算它的面積;
(3)若點(diǎn)F為對稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,如果存在,請求出點(diǎn)G的坐標(biāo),如果不存在,請說明理由。
(1) y=x2-2x-3;(2)證明過程見解析,16;(3)G1(-2,5),G2(4,5),G3(2,-3).
解析試題分析:(1)根據(jù)二次函數(shù)平移的規(guī)律:“左加右減,上加下減”,得出平移后解析式即可;
(2)首先求出A,B兩點(diǎn)的坐標(biāo),再利用頂點(diǎn)坐標(biāo)得出AC=CB,CE=DE,進(jìn)而得出四邊形ADBE是平行四邊形以及四邊形ADBE是菱形,再利用三角形面積公式求出即可;
(3)利用分OB為平行四邊形的邊和對角線兩種情況:①當(dāng)OB為平行四邊形的一邊時(shí),②當(dāng)OB為平行四邊形的一對角線時(shí)分別得出即可.
試題解析:(1)∵將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2,
∴拋物線C1的頂點(diǎn)(0,3)向右平移1個(gè)單位,再向下平移7個(gè)單位得到(1,-4).
∴拋物線C2的頂點(diǎn)坐標(biāo)為(1,-4).
∴拋物線C2的解析式為y=(x-1)2-4,即y=x2-2x-3;
(2)證明:由x2-2x-3=0,
解得:x1=-1,x2=3,
∵點(diǎn)A在點(diǎn)B的左側(cè),
∴A(-1,0),B(3,0),AB=4.
∵拋物線C2的對稱軸為x=1,頂點(diǎn)坐標(biāo)D為(1,-4),
∴CD=4.AC=CB=2.
將x=1代入y=x2+3得y=4,
∴E(1,4),CE=DE.
∴四邊形ADBE是平行四邊形.
∵ED⊥AB,
∴四邊形ADBE是菱形.
S菱形ADBE=2××AB×CE=2××4×4=16.
(3)存在.分AB為平行四邊形的邊和對角線兩種情況:
①當(dāng)OB為平行四邊形的一邊時(shí),如圖1,
設(shè)F(1,y),
∵OB=3,∴G1(-2,y)或G2(4,y).
∵點(diǎn)G在y=x2-2x-3上,
∴將x=-2代入,得y=5;將x=4代入,得y=5.
∴G1(-2,5),G2(4,5).
②當(dāng)OB為平行四邊形的一對角線時(shí),如圖2,
設(shè)F(1,y),OB的中點(diǎn)M,過點(diǎn)G作GH⊥OB于點(diǎn)H,
∵OB=3,OC=1,∴OM=,CM=.
∵△CFM≌△HGM(AAS),∴HM=CM=.
∴OH=2.
∴G3(2,-y).
∵點(diǎn)G在y=x2-2x-3上,
∴將(2,-y)代入,得-y=-3,即y=3.
∴G3(2,-3).
綜上所述,在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,
點(diǎn)G的坐標(biāo)為G1(-2,5),G2(4,5),G3(2,-3).
考點(diǎn): 二次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù).
(1)求頂點(diǎn)坐標(biāo)和對稱軸方程;
(2)求該函數(shù)圖象與x標(biāo)軸的交點(diǎn)坐標(biāo);
(3)指出x為何值時(shí),;當(dāng)x為何值時(shí),.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)和點(diǎn)在拋物線上.
(1)求的值及點(diǎn)的坐標(biāo);
(2)點(diǎn)在軸上,且滿足△是以為直角邊的直角三角形,求點(diǎn)的坐標(biāo);
(3)平移拋物線,記平移后點(diǎn)A的對應(yīng)點(diǎn)為,點(diǎn)B的對應(yīng)點(diǎn)為. 點(diǎn)M(2,0)在x軸上,當(dāng)拋物線向右平移到某個(gè)位置時(shí),最短,求此時(shí)拋物線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在x軸上,且與y軸交于A點(diǎn). 直線經(jīng)過A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(3,4).
(1)求拋物線的解析式,并判斷點(diǎn)B是否在拋物線上;
(2)如果點(diǎn)B在拋物線上,P為線段AB上的一個(gè)動點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E,設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x.當(dāng)x為何值時(shí),h取得最大值,求出這時(shí)的h值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線與x軸相交于兩點(diǎn)A(1,0),B(-3,0),與y軸相交于點(diǎn)C(0,3).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)如果點(diǎn)是拋物線上的一點(diǎn),求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)寫出以A,B,C為頂點(diǎn)的三角形面積;
(2)過點(diǎn)E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左側(cè)),以MN為一邊,拋物線上的任一點(diǎn)P為另一頂點(diǎn)做平行四邊形,當(dāng)平行四邊形的面積為8時(shí),求出點(diǎn)P的坐標(biāo);
(3)過點(diǎn)D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點(diǎn)Q(點(diǎn)Q在第一象限),使得以Q,D,B為頂點(diǎn)的三角形和以B,C,O為頂點(diǎn)的三角形相似,求線段QD的長(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo).
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,黎叔叔想用60m長的籬笆靠墻MN圍成一個(gè)矩形花圃ABCD,已知墻長MN=30m.
(1)能否使矩形花圃ABCD的面積為400m2?若能,請說明圍法;若不能,請說明理由.
(2)請你幫助黎叔叔設(shè)計(jì)一種圍法,使矩形花圃ABCD的面積最大,并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看做一次函數(shù):y=-10x+500.
(1)設(shè)李明每月獲得利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?(6分)
(2)如果李明想要每月獲得2 000元的利潤,那么銷售單價(jià)應(yīng)定為多少元?(3分)
(3)物價(jià)部門規(guī)定,這種護(hù)眼臺燈的銷售單價(jià)不得高于32元,如果李明想要每月獲得的利潤不低于2 000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量) (3分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com