已知二次函數(shù).
(1)求頂點(diǎn)坐標(biāo)和對稱軸方程;
(2)求該函數(shù)圖象與x標(biāo)軸的交點(diǎn)坐標(biāo);
(3)指出x為何值時,;當(dāng)x為何值時,.
(1)(2,-1),x=2;(2)(1,0),(3,0);(3)當(dāng)x<1,x>3時,y>0;當(dāng)1<x<3時,y<0.
解析試題分析:(1)根據(jù)二次函數(shù)的頂點(diǎn)坐標(biāo)公式和對稱軸公式分別求出即可;
(2)令y=0,得,解之即可;
(3)根據(jù)a的值及函數(shù)圖象與x標(biāo)軸的交點(diǎn)坐標(biāo),即可指出x為何值時,;當(dāng)x為何值時,.
試題解析:(1)y=x2-4x+3= x2-4x+4-1=(x-2)2-1
所以,拋物線的頂點(diǎn)坐標(biāo)是(2,-1),對稱軸方程為x=2.
(2)令y=0,得x2-4x+3=0,解得x1=1,x2=3,所以函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)為(1,0),(3,0).
(3)當(dāng)x<1,x>3時,y>0;當(dāng)1<x<3時,y<0;
考點(diǎn): 二次函數(shù)的圖象.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=x2+mx+n交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)P是它的頂點(diǎn),點(diǎn)A的坐標(biāo)是(1,0),點(diǎn)B的坐標(biāo)是(﹣3,0).
(1)求m、n的值;
(2)求直線PC的解析式.
[溫馨提示:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(﹣,)].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知拋物線交軸于A(2,0),B(6,0)兩點(diǎn),交軸于點(diǎn)C(0,).
(1)求此拋物線的解析式;
(2)若此拋物線的對稱軸與直線交于點(diǎn)D,作⊙D與x軸相切,⊙D交軸于點(diǎn)E、F兩點(diǎn),求劣弧EF所對圓心角的度數(shù);
(3)P為此拋物線在第二象限圖像上的一點(diǎn),PG垂直于軸,垂足為點(diǎn)G,試確定P點(diǎn)的位置,使得△PGA的面積被直線AC分為1︰2兩部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
拋物線過點(diǎn)(2,-2)和(-1,10),與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的解析式.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設(shè)花園與墻平行的一邊長為x(m),花園的面積為y(m2)。
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時x的值,若不能,說明理由:
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時,花園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=ax2+bx-3的圖象經(jīng)過點(diǎn)A(2,-3),B(-1,0). 求二次函數(shù)的解析式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B(0,4),已知點(diǎn)E(0,1).
(1)求m的值及點(diǎn)A的坐標(biāo);
(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結(jié)A′B、BE′.
①當(dāng)點(diǎn)E′落在該二次函數(shù)的圖象上時,求AA′的長;
②設(shè)AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點(diǎn)E′的坐標(biāo);
③當(dāng)A′B+BE′取得最小值時,求點(diǎn)E′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,直線與x軸相交于點(diǎn)A,與直線相交于點(diǎn)P.動點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個單位長度的速度沿著OPA的路線向點(diǎn)A勻速運(yùn)動(E不與點(diǎn)O,A重合),過點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運(yùn)動t秒時,矩形EBOF與△OPA重疊部分面積為S.
(1)求點(diǎn)P的坐標(biāo);
(2)請判斷△OPA的形狀并說明理由;
(3)請?zhí)骄縎與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點(diǎn)F為對稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,如果存在,請求出點(diǎn)G的坐標(biāo),如果不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com