已知拋物線的頂點在x軸上,且與y軸交于A點. 直線經(jīng)過A、B兩點,點B的坐標(biāo)為(3,4).
(1)求拋物線的解析式,并判斷點B是否在拋物線上;
(2)如果點B在拋物線上,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于點E,設(shè)線段PE的長為h,點P的橫坐標(biāo)為x.當(dāng)x為何值時,h取得最大值,求出這時的h值.

(1) 不在;(2)當(dāng)時,h有最大值.

解析試題分析:(1)∵拋物線的頂點在x軸上,
.
∴b=±2.
∴拋物線的解析式為
將B(3,4)代入,左=右,
∴點B在拋物線上.
將B(3,4)代入,左≠右,
∴點B不在拋物線
(2)∵A點坐標(biāo)為(0,1),點B坐標(biāo)為(3,4),直線過A、B兩點
.∴
.
∵點B在拋物線上.
設(shè)P、E兩點的縱坐標(biāo)分別為yP和yE .
∴ PE=h=yP-yE
=(x+1)-(x2-2x+1)
=-x2+3x.
即h=x2+3x(0<x<3).
∴當(dāng)時,h有最大值
最大值為.
考點:二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

拋物線過點(2,-2)和(-1,10),與x軸交于A、B兩點,與y軸交于C點.
(1)求拋物線的解析式.
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,直線與x軸相交于點A,與直線相交于點P.動點E從原點O出發(fā),以每秒1個單位長度的速度沿著OPA的路線向點A勻速運動(E不與點O,A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運動t秒時,矩形EBOF與△OPA重疊部分面積為S.

(1)求點P的坐標(biāo);
(2)請判斷△OPA的形狀并說明理由;
(3)請?zhí)骄縎與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過(-1,0),(0,-3),(2,-3)三點,求這條拋物線的解析式,并指出對稱軸和頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(4,3),(3,0).
(1)b=        ,c=         ;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填寫下表,并在右圖的直角坐標(biāo)系中畫出該函數(shù)的圖像;

x

 
 
 
 
 

y

 
 
 
 
 

 
(3)若將此圖象沿x軸向左平移3個單位,直接寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式           .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線).
(1)求拋物線與軸的交點坐標(biāo);
(2)若拋物線與軸的兩個交點之間的距離為2,求的值;
(3)若一次函數(shù)的圖象與拋物線始終只有一個公共點,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(點A在點B的左側(cè))。

(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O(shè)、B、F、G四點為頂點的四邊形是平行四邊形,如果存在,請求出點G的坐標(biāo),如果不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線AB分別交y軸、x 軸于A、B兩點,OA=2,,拋物線過A、B兩點.

(1)求直線AB和這個拋物線的解析式;
(2)設(shè)拋物線的頂點為D,求△ABD的面積
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當(dāng)t 取何值時,MN的長度l有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點,拋物線y=ax2+bx﹣3a經(jīng)過點A,B,頂點為C,連接CB并延長交x軸于點E,點D與點B關(guān)于拋物線的對稱軸MN對稱.


(1)求拋物線的解析式及頂點C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形.

查看答案和解析>>

同步練習(xí)冊答案