已知拋物線與x軸相交于兩點(diǎn)A(1,0),B(-3,0),與y軸相交于點(diǎn)C(0,3).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)如果點(diǎn)是拋物線上的一點(diǎn),求△ABD的面積.
(1);(2).
解析試題分析:(1)設(shè)拋物線的解析式為. 將A、B兩點(diǎn)坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值,從而確定該二次函數(shù)的解析式;
(2)將D點(diǎn)橫坐標(biāo)代入拋物線的解析式中,即可求出m的值;以AB為底,D點(diǎn)縱坐標(biāo)的絕對(duì)值為高,即可求出△ABD的面積.
試題解析:
解:(1)∵拋物線與y軸相交于點(diǎn)C(0,3),
∴設(shè)拋物線的解析式為.
∵拋物線與x軸相交于兩點(diǎn),
∴ 解得:
∴拋物線的函數(shù)表達(dá)式為:.
(2)∵點(diǎn)是拋物線上一點(diǎn),
∴.
∴ .
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在某市開(kāi)展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,某居民小區(qū)要在一塊靠墻(墻長(zhǎng)15米)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍成,若設(shè)花園與墻平行的一邊長(zhǎng)為x(m),花園的面積為y(m2)。
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值,若不能,說(shuō)明理由:
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線與軸相交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn).
(1)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;
(2)在軸的正半軸上是否存在點(diǎn),使以點(diǎn),,為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
二次函數(shù)y=x2+bx+c的圖象經(jīng)過(guò)點(diǎn)(4,3),(3,0).
(1)b= ,c= ;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填寫(xiě)下表,并在右圖的直角坐標(biāo)系中畫(huà)出該函數(shù)的圖像;
x | … | | | | | | … |
y | … | | | | | | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線經(jīng)過(guò)(0,-1),(3,2)兩點(diǎn).求它的解析式及頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))。
(1)求拋物線C2的解析式;
(2)若拋物線C2的對(duì)稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請(qǐng)證明四邊形ADBE是菱形,并計(jì)算它的面積;
(3)若點(diǎn)F為對(duì)稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,如果存在,請(qǐng)求出點(diǎn)G的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)y1=ax2+bx-3的圖象經(jīng)過(guò)點(diǎn)A(2,-3),B(-1,0),與y軸交于點(diǎn)C,與x軸另一交點(diǎn)交于點(diǎn)D.
(1)求二次函數(shù)的解析式;
(2)求點(diǎn)C、點(diǎn)D的坐標(biāo);
(3)若一條直線y2,經(jīng)過(guò)C、D兩點(diǎn),請(qǐng)直接寫(xiě)出y1>y2時(shí),的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
有兩個(gè)直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。將這兩個(gè)直角三角形按圖1所示位置擺放,其中直角邊在同一直線上,且點(diǎn)與點(diǎn)重合,F(xiàn)固定,將以每秒1個(gè)單位長(zhǎng)度的速度在上向右平移,當(dāng)點(diǎn)與點(diǎn)重合時(shí)運(yùn)動(dòng)停止。設(shè)平移時(shí)間為秒。
(1)當(dāng)為 秒時(shí),邊恰好經(jīng)過(guò)點(diǎn);當(dāng)為 秒時(shí),運(yùn)動(dòng)停止;
(2)在平移過(guò)程中,設(shè)與重疊部分的面積為,請(qǐng)直接寫(xiě)出與的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
(3)當(dāng)停止運(yùn)動(dòng)后,如圖2,為線段上一點(diǎn),若一動(dòng)點(diǎn)從點(diǎn)出發(fā),先沿方向運(yùn)動(dòng),到達(dá)點(diǎn)后再沿斜坡方向運(yùn)動(dòng)到達(dá)點(diǎn),若該動(dòng)點(diǎn)在線段上運(yùn)動(dòng)的速度是它在斜坡上運(yùn)動(dòng)速度的2倍,試確定斜坡的坡度,使得該動(dòng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)所用的時(shí)間最短。(要求,簡(jiǎn)述確定點(diǎn)位置的方法,但不要求證明。)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點(diǎn)C在y軸正半軸上,已知點(diǎn)A(-1,0).
(1)請(qǐng)直接寫(xiě)出點(diǎn)B,C的坐標(biāo):B( , ),C( , );
(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線解析式;
(3)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點(diǎn)E放在線段AB上(點(diǎn)E是不與A,B兩點(diǎn)重合的動(dòng)點(diǎn)),并使ED所在直線經(jīng)過(guò)點(diǎn)C.此時(shí),EF所在直線與(2)中的拋物線交于第一象限的點(diǎn)M.當(dāng)AE=2時(shí),拋物線的對(duì)稱軸上是否存在點(diǎn)P使△PEM是等腰三角形,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com