【題目】已知:∠MON=36°,OE平分∠MON,點A,B分別是射線OM,OE,上的動點(A,B不與點O重合),點D是線段OB上的動點,連接AD并延長交射線ON于點C,設∠OAC=x,
(1)如圖1,若AB∥ON,則
①∠ABO的度數(shù)是______;
②當∠BAD=∠ABD時,x=______;
當∠BAD=∠BDA時,x=______;
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個相等的角?若存在,求出x的值;若不存在,請說明理由.
【答案】(1)①18°;②126°;③63°;(2)當x=18、36、54時,△ADB中有兩個相等的角.
【解析】
(1)運用平行線的性質(zhì)以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)以及△AOB的內(nèi)角和,可得x的值;
(2)根據(jù)三角形內(nèi)角和定理以及直角的度數(shù),可得x的值.
解:(1)如圖1,①∵∠MON=36°,OE平分∠MON,
∴∠AOB=∠BON=18°,
∵AB∥ON,
∴∠ABO=18°;
②當∠BAD=∠ABD時,∠BAD=18°,
∵∠AOB+∠ABO+∠OAB=180°,
∴∠OAC=180°-18°×3=126°;
③當∠BAD=∠BDA時,∵∠ABO=18°,
∴∠BAD=81°,∠AOB=18°,
∵∠AOB+∠ABO+∠OAB=180°,
∴∠OAC=180°-18°-18°-81°=63°,
故答案為①18°;②126°;③63°;
(2)如圖2,存在這樣的x的值,使得△ADB中有兩個相等的角.
∵AB⊥OM,∠MON=36°,OE平分∠MON,
∴∠AOB=18°,∠ABO=72°,
若∠BAD=∠ABD=72°,則∠OAC=90°-72°=18°;
若∠BAD=∠BDA=(180°-72°)÷2=54°,則∠OAC=90°-54°=36°;
若∠ADB=∠ABD=72°,則∠BAD=36°,故∠OAC=90°-36°=54°;
綜上所述,當x=18、36、54時,△ADB中有兩個相等的角.
科目:初中數(shù)學 來源: 題型:
【題目】元宵節(jié)將至,我校組織學生制作并選送50盞花燈,共包括傳統(tǒng)花燈、創(chuàng)意花燈和現(xiàn)代花燈三大種.已知每盞傳統(tǒng)花燈需要35元材料費,每盞創(chuàng)意花燈需要33元材料費,每盞現(xiàn)代花燈需要30元材料費.
(1)如果我校選送20盞現(xiàn)代花燈,已知傳統(tǒng)花燈數(shù)量不少于5盞且總材料費不得超過1605元,請問選送傳統(tǒng)花燈、創(chuàng)意花燈的數(shù)量有哪幾種方案?
(2)當三種花燈材料總費用為1535元時,求選送傳統(tǒng)花燈、創(chuàng)意花燈、現(xiàn)代花燈各幾盞?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠1=∠2,G為AD的中點,BG的延長線交AC于點E,F為AB上的一點,CF與AD垂直,交AD于點H,則下面判斷正確的有( )
①AD是△ABE的角平分線;②BE是△ABD的邊AD上的中線;
③CH是△ACD的邊AD上的高;④AH是△ACF的角平分線和高
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰直角△ABC中,AB=AC,∠BAC=90°,過點B,點C分別作經(jīng)過點A的直線l的垂線,垂足分別為M、N.
(1)請找到一對全等三角形,并說明理由;
(2)BM,CN,MN之間有何數(shù)量關系?并說明理由;
(3)若BM=3,CN=5,求四邊形MNCB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)果農(nóng)收獲草莓30噸,枇杷13噸,現(xiàn)計劃租用甲、乙兩種貨車共10輛將這批水果全部運往省城,已知甲種貨車可裝草莓4噸和枇杷1噸,乙種貨車可裝草莓、枇杷各2噸.
(1)該果農(nóng)安排甲、乙兩種貨車時有幾種方案請您幫助設計出來;
(2)若甲種貨車每輛要付運輸費2 000元,乙種貨車每輛要付運輸費1 300元,則該果農(nóng)應選擇哪種運輸方案才能使運費最少,最少運費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是直立在高速公路邊水平地面上的交通警示牌,經(jīng)測量得到如下數(shù)據(jù):AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為( )
A.4 米
B.(2 +2)米
C.(4 ﹣4)米
D.(4 ﹣4)米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有實數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某!瓣柟怏w育”活動的開展情況,從該校1000名學生中隨機抽取部分學生進行問卷調(diào)查(每名學生只能填寫一項自己最喜歡的體育項目),并將調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中信息,解答下列問題:
(1)被調(diào)查的學生共有多少人?
(2)扇形統(tǒng)計圖中m的值和a的度數(shù)分別是多少?
(3)根據(jù)部分學生最喜歡體育項目的調(diào)查情況,請估計全校學生中最喜歡籃球的人數(shù)大約有多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com