【題目】等腰直角△ABC中,AB=AC,∠BAC=90°,過點B,點C分別作經(jīng)過點A的直線l的垂線,垂足分別為M、N.
(1)請找到一對全等三角形,并說明理由;
(2)BM,CN,MN之間有何數(shù)量關(guān)系?并說明理由;
(3)若BM=3,CN=5,求四邊形MNCB的面積.
【答案】(1)△ABM≌△CAN,證明見解析;(2)BM+CN=MN,理由見解析;(3)32.
【解析】
(1)根據(jù)∠BAC=90°BM⊥MN,得出BM⊥MN,即可證明全等
(2)根據(jù)題(1)△ABM≌△CAN,可知CN=AM,BM=AN,即可解答
(3)根據(jù)題(2)MN=BM+CN=8,即可解答
(1)△ABM≌△CAN,
理由如下:∵∠BAC=90°,
∴∠MAB+∠NAC=90°,
∵BM⊥MN,
∴∠MAB+∠MBA=90°,
∴∠MBA=∠NAC,
在△ABM和△CAN中,
,
∴△ABM≌△CAN;
(2)BM+CN=MN,
理由如下:∵△ABM≌△CAN,
∴CN=AM,BM=AN,
∴MN=AM+AN=BM+CN;
(3)∵BM=3,CN=5,
∴MN=BM+CN=8,
∴四邊形MNCB的面積=×(BM+CN)×MN=×(3+5)×8=32.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC=3∠BAD,記∠ADC=,∠ACG=,∠AEF=,則:(1)__(填“>”、“=”或“<”號);
(2)、、三者間的數(shù)量關(guān)系式是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與x軸交于兩點A(﹣4,0)和B(1,0),與y軸交于點C(0,2),動點D沿△ABC的邊AB以每秒2個單位長度的速度由起點A向終點B運動,過點D作x軸的垂線,交△ABC的另一邊于點E,將△ADE沿DE折疊,使點A落在點F處,設(shè)點D的運動時間為t秒.
(1)求拋物線的解析式和對稱軸;
(2)是否存在某一時刻t,使得△EFC為直角三角形?若存在,求出t的值;若不存在,請說明理由;
(3)設(shè)四邊形DECO的面積為s,求s關(guān)于t的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥EF,∠C=90°,∠B,∠D,∠E三個角的大小分別是x,y,z則x,y,z之間滿足的關(guān)系式是( )
A. x+z=yB. x+y+═180°C. x+y﹣z=90°D. y+z﹣x=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠MON=36°,OE平分∠MON,點A,B分別是射線OM,OE,上的動點(A,B不與點O重合),點D是線段OB上的動點,連接AD并延長交射線ON于點C,設(shè)∠OAC=x,
(1)如圖1,若AB∥ON,則
①∠ABO的度數(shù)是______;
②當(dāng)∠BAD=∠ABD時,x=______;
當(dāng)∠BAD=∠BDA時,x=______;
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個相等的角?若存在,求出x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一條線段AB平移一段距離后得到線段A’B’,連接AA’,BB’可以得到一個平行四邊形ABB’A’請據(jù)此回答下面問題:
在平面直角坐標(biāo)系中有A點(1,0),B點(-2,1),C點(-1,-3),若坐標(biāo)平面內(nèi)存在點D,使得A,B,C,D四點恰好能構(gòu)成一個平行四邊形,求D點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com