精英家教網 > 初中數學 > 題目詳情

【題目】下列結論正確的是( )
A.3a2b-a2b=2
B.單項式-x2的系數是-1
C.使式子(x+2)0有意義的x的取值范圍是x≠0
D.若分式 的值等于0,則a=±1

【答案】B
【解析】解:A、3a2b-a2b=2a2b,A不符合題意;
B、單項式-x2的系數是-1,B符合題意;
C、使式子(x+2)0有意義,則x+2≠0,∴x≠-2,C不符合題意;
D、分式值為0,則分子等于0且分母不等于0,a2-1=0且a+1≠0,∴a=1,D不符合題意;
故答案為:B
根據合并同類項把同類項的系數相加,字母和字母的指數不變,可對A作出判斷;單項式前面的數字因數是單項式的系數,可對B作出判斷;根據任何不等于零的數的零次冪等于1,可對C作出判斷;根據分式的值為0.則分子等于0且分母不等于0,即可求出a的值,可對D作出判斷。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AOB為等腰三角形,頂點A的坐標(2,),底邊OBx軸上.將AOB繞點B按順時針方向旋轉一定角度后得A′O′B,點A的對應點A′x軸上,則點O′的坐標為( 。

A. , B. , C. , D. ,4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC,∠C=90,AC<BC,D為BC上一點,且到A,B兩點的距離相等.

(1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);
(2)連結AD,若∠B=37°,則∠CAD=度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,點D為AB的中點.如果點P在線段BC上以每秒2厘米的速度由B點向C點運動,同時,點Q在線段CA上以每秒a厘米的速度由C點向A點運動,設運動時間為t(秒)(0≤ t≤3).

(1)用的代數式表示PC的長度;
(2)若點P、Q的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由.
(3)若點P、Q的運動速度不相等,當點Q的運動速度a為多少時,能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的方程x2-(2k+1)x+4(k-0.5)=0

(1)判斷方程根的情況;

(2)k為何值時,方程有兩個相等的實數根,并求出此時方程的根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法中,正確的個數有(

①過兩點有且只有一條直線;②連接兩點的線段叫做兩點間的距離;③兩點之間,線段最短;④若∠AOC=2BOC,則OB是∠AOC的平分線.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點C是△ABE的BE邊上一點,點F在AE上,D是BC的中點,且AB=AC=CE,給出下列結論:

①AD⊥BC;②CF⊥AE;
③∠1=∠2;④AB+BD=DE,
其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一元二次方程x2+4x﹣3=0的兩根為x1、x2 , 則x1x2的值是(
A.4
B.﹣4
C.3
D.﹣3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△AOB是等腰直角三角形,直線BD∥OA,OB=OA=1,P是線段AB上一動點,過P點作MN∥OB,分別交OA、BD于M、N,PC⊥PO,交BD于點C.

(1)求證:OP=PC;

(2)當點C在射線BN上時,設AP長為m,四邊形POBC的面積為S,請求出S與m間的函數關系式,并寫出自變量m的取值范圍;

(3)當點P在線段AB上移動時,點C也隨之在直線BN上移動,△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形時的PM的值;如果不可能,請說明理由.

查看答案和解析>>

同步練習冊答案