【題目】如圖,在平面直角坐標系xOy中,直線y=2x+2與函數y=(k≠0)的圖象交于A,B兩點,且點A的坐標為(1,m).
(1)求k,m的值;
(2)已知點P(a,0),過點P作平行于y軸的直線,交直線y=2x+2于點M,交函數y=(k≠)的圖象于點N.
①當a=2時,求線段MN的長;
②若PM>PN,結合函數的圖象,直接寫出a的取值范圍.
【答案】(1)k=4,m=4;(2)①4;②當a<﹣2,或a>1時,PM>PN.
【解析】
(1)根據坐標與圖形的關系求出m,利用待定系數法計算即可;
(2)當a=2時,P(2,0),由①直線y=2x+2,反比例函數的解析式為y=可得到MN=4,作出圖形即可觀察出當a<﹣2,或a>1時,PM>PN.
解:(1)∵點A(1,m)在直線y=2x+2上,
∴m=2×1+2=4,
∴點A的坐標為(1,4),代入函數y=中,得
∴k=1×4=4.
(2)①當a=2時,P(2,0).
∵直線y=2x+2,反比例函數的解析式為y=.
∴M(2,6),N(2,2),
∴MN=4.
②如圖,
可得:當a<﹣2,或a>1時,PM>PN.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx﹣3a經過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E是正方形ABCD內一點,點E到點A,B和D的距離分別為1,2,,將△ADE繞點A旋轉至△ABG,連接AE,并延長AE與BC相交于點F,連接GF,則△BGF的面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學老師布置了這樣一個問題:如果α,β都為銳角,且tanα=,tanβ=.求α+β的度數.甲、乙兩位同學想利用正方形網格構圖來解決問題.他們分別設計了圖1和圖2.
(1)請你分別利用圖1,圖2求出α+β的度數,并說明理由;
(2)請參考以上思考問題的方法,選擇一種方法解決下面問題:
如果α,β都為銳角,當tanα=5,tanβ=時,在圖3的正方形網格中,利用已作出的銳角α,畫出∠MON,使得∠MON=α-β.求出α-β的度數,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線型拱橋,當拱頂離水面8m時,水面寬AB為12m.當水面上升6m時達到警戒水位,此時拱橋內的水面寬度是多少m?
下面給出了解決這個問題的兩種方法,請補充完整:
方法一:如圖1,以點A為原點,AB所在直線為x軸,建立平面直角坐標系xOy,
此時點B的坐標為( , ),拋物線的頂點坐標為( , ),
可求這條拋物線所表示的二次函數的解析式為 .
當y=6時,求出此時自變量x的取值,即可解決這個問題.
方法二:如圖2,以拋物線頂點為原點,對稱軸為y軸,建立平面直角坐標系xOy,
這時這條拋物線所表示的二次函數的解析式為 .
當y= 時,求出此時自變量x的取值為 ,即可解決這個問題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC的中點,四邊形ABDE是平行四邊形.
(1)求證:四邊形ADCE是矩形;
(2)若AC、DE交于點O,四邊形ADCE的面積為16,CD=4,求∠AOD的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(,y3)在該函數圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com