【題目】如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),點(diǎn)E到點(diǎn)A,B和D的距離分別為1,2,,將△ADE繞點(diǎn)A旋轉(zhuǎn)至△ABG,連接AE,并延長AE與BC相交于點(diǎn)F,連接GF,則△BGF的面積為_____.
【答案】
【解析】
作BM⊥AF垂足為F,根據(jù)勾股定理逆定理得到△EGB是直角三角形,即可得到△BEM是等腰直角三角形,利用△ABM∽△AFB得到FM的長,進(jìn)而得到AF=AE+ME+MF=,最后根據(jù)S△BGF=S△AEG+S△BEG+S△BEF-S△AFG進(jìn)行計(jì)算即可.
如圖,作BM⊥AF于點(diǎn)M,
∵四邊形ABCD為正方形,
∴AB=AD,∠BAD=90°,
∵△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)后得到△ABG,
∴△AED≌△AGB,∠EAG=90°,
∴AE=AG=1,BG=DE=,
∴GE=,
又∵BE=2,
∴EG2+EB2=10=BG2,
∴△BEG是直角三角形,∠BEG=90°,
∵∠AEG=∠AGE=45°,∠BEM+∠AEG=90°,
∴∠BEM=45°,
∵BE=2,
∴ME=MB=2,AM=AE+ME=1+2=3,
又可證△AMB∽△BMF,
∴,
∴FM=,
∴AF=AE+ME+MF=,
由圖可得,S△BGF=S△AEG+S△BEG+S△BEF-S△AFG
=×1×1+××2+×(2+)×2-×1×
=.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)I是△ABC的內(nèi)心,∠AIC=124°,點(diǎn)E在AD的延長線上,則∠CDE的度數(shù)為( )
A. 56° B. 62° C. 68° D. 78°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy內(nèi)有三點(diǎn):(0,﹣2),(1,﹣1),(2.17,0.37).則過這三個(gè)點(diǎn)_____(填“能”或“不能”)畫一個(gè)圓,理由是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為.
(1)求k的值;
(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對角為60°的菱形,請寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).
(1)求拋物線的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長的最大值;
(3)試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,點(diǎn)P從A點(diǎn)出發(fā),以1cm/s的速度向B點(diǎn)移動(dòng),點(diǎn)Q從B點(diǎn)出發(fā),以2cm/s的速度向C點(diǎn)移動(dòng).如果P、Q兩點(diǎn)同時(shí)出發(fā),經(jīng)過幾秒后△PBQ的面積等于4cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車由高速公路從甲地到乙地所需的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=2x+2與函數(shù)y=(k≠0)的圖象交于A,B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(1,m).
(1)求k,m的值;
(2)已知點(diǎn)P(a,0),過點(diǎn)P作平行于y軸的直線,交直線y=2x+2于點(diǎn)M,交函數(shù)y=(k≠)的圖象于點(diǎn)N.
①當(dāng)a=2時(shí),求線段MN的長;
②若PM>PN,結(jié)合函數(shù)的圖象,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線y=(m>0)與直線y=kx交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(3,2).
(1)由題意可得m的值為 ,k的值為 ,點(diǎn)B的坐標(biāo)為 ;
(2)若點(diǎn)P(n﹣2,n+3)在第一象限的雙曲線上,試求出n的值及點(diǎn)P的坐標(biāo);
(3)在(2)小題的條件下:如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)P、A、M、N為頂點(diǎn)的四邊形是平行四邊形,試求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com