【題目】如圖,AB、CB、CD分別與⊙O切于E,F,G,且AB∥CD.連接OB、OC,延長CO交⊙O于點M,過點M作MN∥OB交CD于N.
(1)當OB=6cm,OC=8cm時,求⊙O的半徑;
(2)求證:MN=NG.
【答案】(1)⊙O的半徑為4.8;(2)見解析.
【解析】
(1)根據(jù)切線的性質(zhì)得到OB平分∠EBF,OC平分∠GCF,OF⊥BC,再根據(jù)平行線的性質(zhì)得∠GCF+∠EBF=180°,則有∠OBC+∠OCB=90°,即∠BOC=90°;連接OF,則OF⊥BC,根據(jù)勾股定理就可以求出BC的長,然后根據(jù)△BOC的面積就可以求出⊙O的半徑;
(2)根據(jù)切線的判定和性質(zhì)定理即可得到結(jié)論.
(1)∵AB、BC、CD分別與⊙O切于E、F、G,
∴OB平分∠EBF,OC平分∠GCF,OF⊥BC,
∴∠OBC= ∠ABC,∠OCB=∠DCB,
又∵AB∥CD,
∴∠GCF+∠EBF=180°,
∴∠OBC+∠OCB=90°,
∴∠BOC=90°;,
連接OF,則OF⊥BC,
由(1)知,△BOC是直角三角形,
∴BC==10,
∵S△BOC=OBOC=BCOF,
∴6×8=10×OF,
∴OF=4.8,
∴⊙O的半徑為4.8;
(2)證明:∵AB、BC、CD分別與⊙O切于點E、F、G,
∴∠OBC=∠ABC,∠DCB=2∠DCM,
∵AB∥CD,
∴∠ABC+∠DCB=180°,
∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°=90°,
∵MN∥OB,
∴∠NMC=∠BOC=90°,
即MN⊥MC 且MO是⊙O的半徑,
∴MN是⊙O的切線,
∴MN=NG.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②當x>﹣1時,y隨x增大而減小;③a+b+c<0;④若方程ax2+bx+c﹣m=0沒有實數(shù)根,則m>2; ⑤3a+c<0.其中正確結(jié)論的個數(shù)是( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知矩形AOCB,AB=6cm,BC=16cm,動點P從點A出發(fā),以3cm/s的速度向點O運動,直到點O為止;動點Q同時從點C出發(fā),以2cm/s的速度向點B運動,與點P同時結(jié)束運動.
(1)當運動時間為2s時,P、Q兩點的距離為 cm;
(2)請你計算出發(fā)多久時,點P和點Q之間的距離是10cm;
(3)如圖2,以點O為坐標原點,OC所在直線為x軸,OA所在直線為y軸,1cm長為單位長度建立平面直角坐標系,連結(jié)AC,與PQ相交于點D,若雙曲線過點D,問k的值是否會變化?若會變化,說明理由;若不會變化,請求出k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓錐母線的長l等于底面半徑r的4倍,
(1)求它的側(cè)面展開圖的圓心角.
(2)當圓錐的底面半徑r=4cm時,求從B點出發(fā)沿圓錐側(cè)面繞一圈回到B點的最短路徑的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,其邊長為2,點A,點C分別在軸,軸的正半軸上.函數(shù)的圖象與CB交于點D,函數(shù)(為常數(shù),)的圖象經(jīng)過點D,與AB交于點E,與函數(shù)的圖象在第三象限內(nèi)交于點F,連接AF、EF.
(1)求函數(shù)的表達式,并直接寫出E、F兩點的坐標.
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中, ,AC=BC,AB=4cm.動點D沿著A→C→B的方向從A點運動到B點.DE⊥AB,垂足為E.設AE長為cm,BD長為cm(當D與A重合時, =4;當D與B重合時=0).
小云根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.
下面是小云的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
補全上面表格,要求結(jié)果保留一位小數(shù).則__________.
(2)在下面的網(wǎng)格中建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象.
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當DB=AE時,AE的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CA=CB,點O在△ABC的內(nèi)部,⊙O經(jīng)過B,C兩點,交AB于點D,連接CO并延長交AB于點G,以GD,GC為鄰邊作GDEC.
(1)判斷DE與⊙O的位置關系,并說明理由.
(2)若點B是的中點,⊙O的半徑為2,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com