9.閱讀理解:如圖①,在四邊形ABCD的邊AB上任取一點E(點E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個三角形,若這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強相似點”.解決問題.
(1)如圖②,在矩形ABCD中,A、B、C、D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形ABCD的邊AB上的強相似點;
(2)如圖③,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB與BC的數(shù)量關(guān)系.

分析 (1)以CD為直徑畫弧,取該弧與AB的一個交點即為所求.
(2)由點E是矩形ABCD的AB邊上的一個強相似點,得△AEM∽△BCE∽△ECM,根據(jù)相似三角形的對應角相等,可求得∠BCE=$\frac{1}{3}$∠BCD=30°,利用含30°角的直角三角形性質(zhì)可得BE與AB之間的數(shù)量關(guān)系.

解答 (2)如圖所示:點E是四邊形ABCD的邊AB上的強相似點,


(3)結(jié)論:BC=$\frac{\sqrt{3}}{2}$AB.
理由:如圖③中,

∵點E是四邊形ABCM的邊AB上的一個強相似點,
∴△AEM∽△BCE∽△ECM,
∴∠BCE=∠ECM=∠AEM.
由折疊可知:△ECM≌△DCM,
∴∠ECM=∠DCM,CE=CD,
∴∠BCE=$\frac{1}{3}$∠BCD=30°,
BE=$\frac{1}{2}$CE=$\frac{1}{2}$AB.
∴點E是AB的中點時,點E恰好是四邊形ABCM的邊AB上的一個強相似點,
設AE=BE=a,則EC=2a,
在Rt△EBC中,BC=$\sqrt{E{C}^{2}-E{B}^{2}}$=$\sqrt{3}$a,
∴AB:BC=2a:$\sqrt{3}$a=2:$\sqrt{3}$,
∴BC=$\frac{\sqrt{3}}{2}$AB.

點評 本題是相似三角形綜合題,主要考查了相似三角形的對應邊成比例的性質(zhì),讀懂題目信息,理解強相似點的定義是解題的關(guān)鍵,本題的突破點是發(fā)現(xiàn)∠BCE=$\frac{1}{3}$∠BCD=30°,屬于中考壓軸題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

19.如圖,拋物線y=a2+bx+c(a>0)交x軸于A(4,0)、B(8,0)兩點,交y軸于點C,且$\frac{OC}{OB}$=$\frac{1}{2}$.
(1)求拋物線的解析式;
(2)若動直線EF(EF∥x軸)從點C開始,以每秒1個長度單位的速度沿y軸負方向平移,且交y軸、線段BC于E、F兩點,動點P同時從點B出發(fā),在線段OB上以每秒2個單位的速度向原點O運動.連結(jié)FP,設運動時間t秒.
①當t為何值時,$\frac{EF•OP}{EF+OP}$的值最大,并求出最大值;
②設AC與EF交于點M,求當t為何值時,M、P、A、F所圍成的圖形是平行四邊形?等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

20.如果關(guān)于x的方程(a-1)x2-$\sqrt{2}$x-1=0有兩個不相等的實數(shù)根,那么a的取值范圍是a>$\frac{1}{2}$且a≠1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

17.如圖,已知∠DAE=22.5°,點C是射線AE上一點,且線段AC=3,若點M和點N分別是射線AD和線段AC上的兩個動點,則MN+MC的最小值是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.已知一個數(shù)的平方根是±(a+4),算術(shù)平方根為2a-1,求這個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.把下列各數(shù)填入相應空格:-7,0.32,$\frac{1}{3}$,46,0,$\sqrt{8}$,$\sqrt{\frac{1}{2}}$,$\root{3}{216}$,$-\frac{π}{2}$.
①有理數(shù)集合:{-7,0.32,$\frac{1}{3}$,46,0,$\sqrt{8}$,$\sqrt{\frac{1}{2}}$,$\root{3}{216}$…}
②無理數(shù)集合:{-$\frac{π}{2}$…}
③正實數(shù)集合:{0.32,$\frac{1}{3}$,46,$\sqrt{8}$,$\sqrt{\frac{1}{2}}$,$\root{3}{216}$…}
④分數(shù)集合:{0.32,$\frac{1}{3}$…}.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.在平面直角坐標系xOy中,直線AB交y軸于A點,交x軸于B點,A(0,6),B(6,0).
(1)現(xiàn)在一直角三角板的直角頂點放置于AB的中點C,并繞C點旋轉(zhuǎn),兩直角邊分別交x軸、y軸于N、M(如圖)兩點,求證:CM=CN;
(2)已知點D(4,6),求點D關(guān)于直線AB對稱的點的坐標;
(3)若E是線段OB上一點,∠AEO=67.5°,OF⊥AE于G,交AB于F,求$\frac{GE}{AE-OF}$的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是ts.過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,請說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

19.若單項式-2xm-1ymn與7x3y2是同類項,則代數(shù)式m-n的值是(  )
A.-$\frac{7}{2}$B.2C.$\frac{7}{2}$D.-2

查看答案和解析>>

同步練習冊答案