【題目】如圖,拋物線過點和,點為線段上一個動點(點與點不重合),過點作垂直于軸的直線與直線和拋物線分別交于點.
(1)求此拋物線的解析式;
(2)若點是的中點,則求點的坐標;
(3)若以點為頂點的三角形與相似,請直接寫出點的坐標.
【答案】(1);(2);(3)P(,)或P(,)
【解析】
(1)把A點坐標和B點坐標代入,解方程組即可;
(2)用m可表示出P、N的坐標,由題意可知有P為線段MN的中點,可得到關(guān)于m的方程,可求得m的值,即可求得點的坐標;
(3) 用m可表示出NP,PM,AM,分當∠BNP=90°時和當∠NBP=90°時兩種情況討論即可.
解: (1) 拋物線經(jīng)過點
解得
∴
(2)由題意易得,直線的解析式為
由,設,
則,
點是的中點,即
∴,解得 (舍)
∴
(3) .
由,設,
∴,,AM=3m,
∵△BPN和△APM相似,且∠BPN=∠APM,
∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,
當∠BNP=90°時,則有BN⊥MN,
∴N點的縱坐標為2,
∴=2,
解得m=0(舍去)或m=,
∴P(,);
當∠NBP=90°時,過點N作NC⊥y軸于點C,
則∠NBC+∠BNC=90°,NC=m,BC=2=,
∵∠NBP=90°,
∴∠NBC+∠ABO=90°,
∴∠ABO=∠BNC,
∴Rt△NCB∽Rt△BOA,
∴,
∴m2=,
解得m=0(舍去)或m=,
∴P(,),
綜上可知,當以B,P,N為頂點的三角形與△APM相似時,點P的坐標為P(,)或P(,).
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,拋物線()與直線交于點、(點在點右邊),將拋物線沿直線翻折,翻折前后兩拋物線的頂點分別為點、,我們將兩拋物線之間形成的封閉圖形稱為驚喜線,四邊形稱為驚喜四邊形,對角線與之比稱為驚喜度(Degree of surprise),記作.
(1)如圖(1)拋物線沿直線翻折后得到驚喜線.則點坐標 ,點坐標 ,驚喜四邊形屬于所學過的哪種特殊平行四邊形? ,為 .
(2)如果拋物線()沿直線翻折后所得驚喜線的驚喜度為1,求的值.
(3)如果拋物線沿直線翻折后所得的驚喜線在時,其最高點的縱坐標為16,求的值并直接寫出驚喜度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中,裝有除顏色外都完全相同的4個紅球和若干個黃球.
如果從袋中任意摸出一個球是紅球的概率為,那么袋中有黃球多少個?
在的條件下如果從袋中摸出一個球記下顏色后放回,再摸出一個球,用列表或畫樹狀圖的方法求出兩次摸出不同顏色球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+c經(jīng)過A(0,﹣4)和B(2,0)兩點.
(1)求c的值及a,b滿足的關(guān)系式;
(2)若拋物線在A和B兩點間,從左到右上升,求a的取值范圍;
(3)拋物線同時經(jīng)過兩個不同的點M(p,m),N(﹣2﹣p,n).
①若m=n,求a的值;
②若m=﹣2p﹣3,n=2p+1,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校開展了主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學生對垃圾分類知識的掌握情況,該校環(huán)保社團成員在校園內(nèi)隨機抽取了部分學生進行問卷調(diào)查將他們的得分按優(yōu)秀、良好、合格、不合格四個等級進行統(tǒng)計,并繪制了如下不完整的統(tǒng)計表和條形統(tǒng)計圖.請根據(jù)圖表信息,解答下列問題:
本次調(diào)查隨機抽取了____ 名學生:表中 ;
補全條形統(tǒng)計圖:
若全校有名學生,請你估計該校掌握垃圾分類知識達到“優(yōu)秀"和“良好”等級的學生共有多少人
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O內(nèi)有折線DABC,點B,C在⊙O上,DA過圓心O,其中OA=8,AB=12,∠A=∠B=60°,則BC=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應地任務:
萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學家,在數(shù)學上經(jīng)常見到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.
如圖1,⊙O和⊙I分別是△ABC的外接圓和內(nèi)切圓,⊙I與AB相切分于點F,設⊙O的半徑為R,⊙I的半徑為r,外心O(三角形三邊垂直平分線的交點)與內(nèi)心I(三角形三條角平分線的交點)之間的距離OI=d,則有d2=R2﹣2Rr.
下面是該定理的證明過程(部分):
延長AI交⊙O于點D,過點I作⊙O的直徑MN,連接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所對的圓周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如圖2,在圖1(隱去MD,AN)的基礎上作⊙O的直徑DE,連接BE,BD,BI,IF,
∵DE是⊙O的直徑,∴∠DBE=90°,
∵⊙I與AB相切于點F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所對圓周角相等),
∴△AIF∽△EDB,
∴,∴②,
任務:(1)觀察發(fā)現(xiàn):, (用含R,d的代數(shù)式表示);
(2)請判斷BD和ID的數(shù)量關(guān)系,并說明理由;
(3)請觀察式子①和式子②,并利用任務(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;
(4)應用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點C,D.若點C的橫坐標為5,BE=3DE,則k的值為( 。
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的四枚郵票圖片形狀完全相同,分別是我國代科學家祖沖之、李時珍、張衡、僧一行.把四張圖片混合在一起.
(1)若隨機摸取一張圖片,則摸到“祖沖之”圖片的概率是__________;
(2)若隨機摸取一張圖片然后放回,再隨機摸取一張圖片,利用列表或樹狀圖求兩次至少有一次摸到“祖沖之”圖片的概率;
(3)小東、小西、小南、小北四位同學依次摸取圖片,若小東摸到“祖沖之”圖片,則剩下三人中( )
A.小西摸到“李時珍”圖片的概率大 B.小南摸到“李時珍”圖片的概率大
C.小北摸到“李時珍”圖片的概率大 D.三人摸到“李時珍”圖片的概率一樣大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com