【題目】定義:在平面直角坐標系中,拋物線()與直線交于點、(點在點右邊),將拋物線沿直線翻折,翻折前后兩拋物線的頂點分別為點、,我們將兩拋物線之間形成的封閉圖形稱為驚喜線,四邊形稱為驚喜四邊形,對角線與之比稱為驚喜度(Degree of surprise),記作.
(1)如圖(1)拋物線沿直線翻折后得到驚喜線.則點坐標 ,點坐標 ,驚喜四邊形屬于所學(xué)過的哪種特殊平行四邊形? ,為 .
(2)如果拋物線()沿直線翻折后所得驚喜線的驚喜度為1,求的值.
(3)如果拋物線沿直線翻折后所得的驚喜線在時,其最高點的縱坐標為16,求的值并直接寫出驚喜度.
【答案】(1);;菱形;2;(2);(3),或,.
【解析】
(1)當(dāng)y=0時可求出點A坐標為,B坐標為,AB=4,根據(jù)四邊形四邊相等可知該四邊形為菱形,由可知拋物線頂點坐標為(1,-4),所以B,AB=8,即可得到為2;
(2)驚喜度為1即,利用拋物線解析式分別求出各點坐標,從而得到AC和BD的長,計算即可求出m;
(3)先求出頂點坐標,對稱軸為直線,討論對稱軸直線是否在這個范圍內(nèi),分3中情況分別求出最大值為16是m的值.
解:(1)在拋物線上,
當(dāng)y=0時,,
解得,,,
∵點在點右邊,
∴A點的坐標為,B點的坐標為;
∴AB=4,
∵
∴頂點B的坐標為,
由于BD關(guān)于x軸對稱,
∴D的坐標為,
∴BD=8,
通過拋物線的對稱性得到AB=BC,
又由于翻折,得到AB=BC=AD=CD,
∴驚喜四邊形為菱形;
;
(2)由題意得:
的頂點坐標,
解得:,∴
∴,
(3)拋物線的頂點為,對稱軸為直線:
①即時,,得
∴
②即時,時,對應(yīng)驚喜線上最高點的函數(shù)值
,∴(舍去);
∴
③即時形成不了驚喜線,故不存在
綜上所述,,或,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,為反比例函數(shù)圖象上的兩點,動點在軸正半軸上運動,當(dāng)線段與線段之差達到最大時,點的坐標是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是( 。
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.
(1)求證:BE=EC
(2)填空:①若∠B=30°,AC=2,則DB= ;
②當(dāng)∠B= 度時,以O,D,E,C為頂點的四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是一本中國乃至東方世界最偉大的一本綜合性數(shù)學(xué)著作,標志著中國古代數(shù)學(xué)形成了完整的體系.“圓材埋壁”是《九章算術(shù)》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”朱老師根據(jù)原文題意,畫出了圓材截面圖如圖所示,已知:鋸口深為1寸,鋸道尺(1尺=10寸),則該圓材的直徑長為( )
A.26寸B.25寸C.13寸D.寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于點A、B,與y軸分別交于點C,其中點,點,且.
(1)求拋物線的解析式;
(2)點P是線段AB上一動點,過P作交BC于D,當(dāng)面積最大時,求點P的坐標;
(3)點M是位于線段BC上方的拋物線上一點,當(dāng)恰好等于中的某個角時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 了解我市市民知曉“禮讓行人”交通新規(guī)的情況,適合全面調(diào)查
B. 甲、乙兩人跳遠成績的方差分別為,,說明乙的跳遠成績比甲穩(wěn)定
C. 一組數(shù)據(jù)2,2,3,4的眾數(shù)是2,中位數(shù)是2.5
D. 可能性是1%的事件在一次試驗中一定不會發(fā)生
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線l:y=x﹣1與x軸交于點A,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBnnCn+1,使得點A1、A2、A3、…在直線l上,點C1、C2、C3、…在y軸正半軸上,則點B的坐標是_____,點Bn的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過點和,點為線段上一個動點(點與點不重合),過點作垂直于軸的直線與直線和拋物線分別交于點.
(1)求此拋物線的解析式;
(2)若點是的中點,則求點的坐標;
(3)若以點為頂點的三角形與相似,請直接寫出點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com