【題目】如圖,已知拋物線與x軸交于點A、B,與y軸分別交于點C,其中點,點,且.
(1)求拋物線的解析式;
(2)點P是線段AB上一動點,過P作交BC于D,當面積最大時,求點P的坐標;
(3)點M是位于線段BC上方的拋物線上一點,當恰好等于中的某個角時,求點M的坐標.
【答案】(1);(2)當時,S最大,此時;(3)或
【解析】
(1)先根據(jù)射影定理求出點,設拋物線的解析式為:,將點代入求出,然后化為一般式即可;
(2)過點P作y軸的平行線交BC于點E,設,用待定系數(shù)法分別求出直線BC,直線AC,直線PD的解析式,表示出點E,點D的坐標,然后根據(jù)三角形面積公式列出二次函數(shù)解析式,利用二次函數(shù)的性質(zhì)求解即可;
(3)分兩種情況求解:當時和當時.
(1)∵,,
∴,.
∵,
∴由射影定理可得:,
∴,∴點,
設拋物線的解析式為:,將點代入上式得:,
∴拋物線的解析式為:;
(2)過點P作y軸的平行線交BC于點E,設,
設,
把,代入得
,
∴,
∴,
∴,
同樣的方法可求,
故可設,把代入得,
聯(lián)立解得:,
∴,
,
故當時,S最大,此時;
(3)由題知,,
當時,,
∴點C與點M關于對稱軸對稱,
∴;
當時,過M作于F,過F作y軸的平行線,交x軸于G,交過M平行于x軸的直線于K,
∵∠,BFM=∠BGF,
∴△MFK∽△FGB,
同理可證:,
∴,,
設,則,
∴,
∴,代入,
解得
,或(舍去),
∴,
故或.
科目:初中數(shù)學 來源: 題型:
【題目】廬陽春風體育運動品商店從廠家購進甲,乙兩種T恤共400件,其每件的售價與進貨量(件)之間的關系及成本如下表所示:
T恤 | 每件的售價/元 | 每件的成本/元 |
甲 | 50 | |
乙 | 60 | |
(1)當甲種T恤進貨250件時,求兩種T恤全部售完的利潤是多少元;
(2)若所有的T恤都能售完,求該商店獲得的總利潤(元)與乙種T恤的進貨量(件)之間的函數(shù)關系式;
(3)在(2)的條件下,已知兩種T恤進貨量都不低于100件,且所進的T恤全部售完,該商店如何安排進貨才能使獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線與軸交于、兩點,與軸交于點,已知,.
(1)求拋物線的解析式;
(2)如圖2,若點是直線上方的拋物線上一動點,過點作軸的平行線交直線于點,作于點,當點的橫坐標為時,求的面積;
(3)若點為拋物線上的一個動點,以點為圓心,為半徑作,當在運動過程中與直線相切時,求點的坐標(請直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=x+3交x軸于點A,交y軸于點B,拋物線y=﹣x2+bx+c經(jīng)過點A,B.
(1)求拋物線解析式;
(2)點C(m,0)在線段OA上(點C不與A,O點重合),CD⊥OA交AB于點D,交拋物線于點E,若DE=AD,求m的值;
(3)點M在拋物線上,點N在拋物線的對稱軸上,在(2)的條件下,是否存在以點D,B,M,N為頂點的四邊形為平行四邊形?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,拋物線()與直線交于點、(點在點右邊),將拋物線沿直線翻折,翻折前后兩拋物線的頂點分別為點、,我們將兩拋物線之間形成的封閉圖形稱為驚喜線,四邊形稱為驚喜四邊形,對角線與之比稱為驚喜度(Degree of surprise),記作.
(1)如圖(1)拋物線沿直線翻折后得到驚喜線.則點坐標 ,點坐標 ,驚喜四邊形屬于所學過的哪種特殊平行四邊形? ,為 .
(2)如果拋物線()沿直線翻折后所得驚喜線的驚喜度為1,求的值.
(3)如果拋物線沿直線翻折后所得的驚喜線在時,其最高點的縱坐標為16,求的值并直接寫出驚喜度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某塑料廠生產(chǎn)一種家用塑料制品,它的成本是元件,售價是元件,年銷售量為萬件.為了獲得更好的效益,廠家準備拿出一定的資金做廣告.根據(jù)測算,若每年投入廣告費萬元,產(chǎn)品的年銷售量將是原銷售量的倍,且與之間滿足,具體數(shù)量如下表:
(萬元) | ||||||
(1)求與的函數(shù)關系式(不要求寫出自變量的取值范圍);
(2)如果把利潤看作是銷售總額減去成本費用和廣告費用,試求出年利潤(萬元)與廣告費用(萬元)的函數(shù)關系式,并計算每年投入的廣告費是多少萬元時,所獲得的利潤最大?
(3)如果廠家希望年利潤(萬元)不低于萬元,請你幫助廠家確定廣告費的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結(jié)論:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正確的結(jié)論是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點B(12,10),過點B作x軸的垂線,垂足為A.作y軸的垂線,垂足為C.點D從O出發(fā),沿y軸正方向以每秒1個單位長度運動;點E從O出發(fā),沿x軸正方向以每秒3個單位長度運動;點F從B出發(fā),沿BA方向以每秒2個單位長度運動.當點E運動到點A時,三點隨之停止運動,運動過程中△ODE關于直線DE的對稱圖形是△O′DE,設運動時間為t.
(1)用含t的代數(shù)式分別表示點E和點F的坐標;
(2)若△ODE與以點A,E,F為頂點的三角形相似,求t的值;
(3)當t=2時,求O′點在坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O內(nèi)有折線DABC,點B,C在⊙O上,DA過圓心O,其中OA=8,AB=12,∠A=∠B=60°,則BC=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com