【題目】如圖,菱形ABCD的邊ADy軸,垂足為點E,頂點A在第二象限,頂點By軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時經(jīng)過頂點C,D.若點C的橫坐標為5,BE=3DE,則k的值為(  )

A. B. 3 C. D. 5

【答案】C

【解析】

由已知,可得菱形邊長為5,設出點D坐標,即可用勾股定理構造方程,進而求出k值.

過點DDFBCF,

由已知,BC=5,

∵四邊形ABCD是菱形,

DC=5,

BE=3DE,

∴設DE=x,則BE=3x,

DF=3x,BF=x,F(xiàn)C=5-x,

RtDFC中,

DF2+FC2=DC2,

(3x)2+(5-x)2=52,

∴解得x=1,

DE=1,F(xiàn)D=3,

OB=a,

則點D坐標為(1,a+3),點C坐標為(5,a),

∵點D、C在雙曲線上,

1×(a+3)=5a,

a=,

∴點C坐標為(5,

k=.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解學生最喜愛的運動項目的情況,隨機抽取了部分學生進行問卷調(diào)查,規(guī)定每人從籃球、羽毛球、自行車、游泳其他五個選項中必須選擇且只能選擇一個,并將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖表.

根據(jù)以上信息,請回答下列問題:

1)這次調(diào)查的樣本容量是 ,a+b=

2)扇形統(tǒng)計圖中自行車對應的扇形的圓心角為

3)若該校有1200名學生,估計該校最喜愛的省運會項目是籃球的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx2x軸負半軸于點A(﹣10),與y軸交于B點.過B點的直線l交拋物線于點C3,﹣1).過點CCDx軸,垂足為D.點Px軸正半軸上的動點,過P點作x軸的垂線,交直線l于點E,交拋物線于點F.設P點的橫坐標為t

1)求拋物線的解析式;

2)連接OE,求POE面積的最大值;

3)連接DE,CF,是否存在這樣的t值:以點CD,EF為頂點的四邊形是平行四邊形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),已知正方形ABCD在直線MN的上方BC在直線MN上,EBC上一點,以AE為邊在直線MN的上方作正方形AEFG

1)連接GD,求證:ADG≌△ABE;

2)連接FC,觀察并直接寫出∠FCN的度數(shù)(不要寫出解答過程)

3)如圖(2),將圖中正方形ABCD改為矩形ABCD,AB6,BC8,E是線段BC上一動點(不含端點BC),以AE為邊在直線MN的上方作矩形AEFG,使頂點G恰好落在射線CD上.判斷當點EBC運動時,∠FCN的大小是否總保持不變,若∠FCN的大小不變,請求出tanFCN的值.若∠FCN的大小發(fā)生改變,請舉例說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】深圳某學校為構建書香校園,擬購進甲、乙兩種規(guī)格的書柜放置新購置的圖書.已知每個甲種書柜的進價比每個乙種書柜的進價高20%,用3600元購進的甲種書柜的數(shù)量比用4200元購進的乙種書柜的數(shù)量少4臺.

1)求甲、乙兩種書柜的進價;

2)若該校擬購進這兩種規(guī)格的書柜共60個,其中乙種書柜的數(shù)量不大于甲種書柜數(shù)量的2倍.請您幫該校設計一種購買方案,使得花費最少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A10)、C(﹣23)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標;

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖,請求出M點的坐標和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E、F是正方形ABCD對角線AC上的兩點,且,連接BE、DE、BF、DF

求證:四邊形BEDF是菱形:

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線與拋物線相交于A,B兩點,且點A1,-4)為拋物線的頂點,點Bx軸上。

1)求拋物線的解析式;

2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;

3)若點Qy軸上一點,且△ABQ為直角三角形,求點Q的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A點的坐標為(a,6),ABx軸于點B,cosOAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點C、D.延長AO交反比例函數(shù)的圖象的另一支于點E.已知點D的縱坐標為

(1)求反比例函數(shù)的解析式;

(2)求直線EB的解析式;

(3)求SOEB

查看答案和解析>>

同步練習冊答案