【題目】如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問題:
(1)仔細(xì)觀察,在圖2中有 個(gè)以線段AC為邊的“8字形”;
(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù).
(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠D、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;
(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為 .
【答案】360°
【解析】
試題分析:(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);
(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計(jì)算即可;
(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).
(4)根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據(jù)四邊形內(nèi)角和為360°可得答案.
解:(1)在圖2中有3個(gè)以線段AC為邊的“8字形”,
故答案為3;
(2)∵∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,
∴∠CAP=∠BAP,∠BDP=∠CDP,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠P﹣∠B,
即∠P=(∠C+∠B),
∵∠C=100°,∠B=96°
∴∠P=(100°+96°)=98°;
(3)∠P=(β+2α);
理由:∵∠CAP=∠CAB,∠CDP=∠CDB,
∴∠BAP=∠BAC,∠BDP=∠BDC,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,
∴2(∠C﹣∠P)=∠P﹣∠B,
∴∠P=(∠B+2∠C),
∵∠C=α,∠B=β,
∴∠P=(β+2α);
(4)∵∠B+∠A=∠1,∠C+∠D=∠2,
∴∠A+∠B+∠C+∠D=∠1+∠2,
∵∠1+∠2+∠F+∠E=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案為:360°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的兩邊長(zhǎng)是2 cm,3 cm,則該三角形的周長(zhǎng)l的取值范圍是( )
A. 1<l<5 B. 1<l<6
C. 5<l<9 D. 6<l<10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示一個(gè)正比例函數(shù)與一個(gè)一次函數(shù)的圖象,它們交于點(diǎn)A(4,3),其中一次函數(shù)的圖象與y軸交于點(diǎn)B,且OA=OB,求這兩個(gè)函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值嗎?
遇到這樣的問題,我們可以先思考一下,從簡(jiǎn)單的情形入手.先計(jì)算下列各式的值:
(1)(x﹣1)(x+1)= ;
(2)(x﹣1)(x2+x+1)= ;
(3)(x﹣1)(x3+x2+x+1)= ;
由此我們可以得到(x﹣1)(x99+x98+…+x+1)= ;
請(qǐng)你利用上面的結(jié)論,完成下面兩題的計(jì)算:
(1)299+298+…+2+1;
(2)(﹣3)50+(﹣3)49+…+(﹣3)+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件,分別求出對(duì)應(yīng)的二次函數(shù)的關(guān)系式.
(1)已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(0,-1),B(1,0),C(-1,2);
(2)已知拋物線的頂點(diǎn)為(1,-3),且與y軸交于點(diǎn)(0,1);
(3)已知拋物線與x軸交于點(diǎn)M(-3,0),(5,0),且與y軸交于點(diǎn)(0,-3);
(4)已知拋物線的頂點(diǎn)為(3,-2),且與x軸兩交點(diǎn)間的距離為4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有25名同學(xué)參加某比賽,預(yù)賽成績(jī)各不相同,取前13名參加決賽,其中一名同學(xué)已經(jīng)知道自己的成績(jī),能否進(jìn)入決賽,只需要再知道這25名同學(xué)成績(jī)的( )
A. 最高分 B. 平均數(shù) C. 中位數(shù) D. 方差
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com