【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°.
(1)求證:BD=AE;
(2)若△ACB不動,把△DCE繞點C旋轉到使點D落在AB邊上,如圖2所示,問上述結論還成立嗎?若成立,給予證明.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,點M是AC的中點,以AB為直徑作⊙O分別交AC,BM于點D,E.
(1)求證:MD=ME;
(2)填空:
①若AB=6,當AD=2DM時,DE=;
②連接OD,OE,當∠A的度數(shù)為時,四邊形ODME是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是軸對稱圖形,且直線AC是對稱軸,AB∥CD,則下列結論:①AC⊥BD;②AD∥BC;③四邊形ABCD是菱形;④△ABD≌△CDB.其中正確的是(只填寫序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,將△ABC繞點B順時針旋轉60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為 ___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在4×4正方形網(wǎng)格中,有3個小正方形已經(jīng)涂黑,若再涂黑任意一個白色的小正方形(每一個白色的小正方形被涂黑的可能性相同),使新構成的黑色部分的圖形是軸對稱圖形的概率是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC三個頂點的坐標分別是A(2,2),B(4,0),C(4,﹣4)
(1)請畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
(2)以點O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2 , 請在y軸右側畫出△A2B2C2 , 并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC=90°,AB=DB,EB=CB,M,N分別是AE,CD的中點.
(1)求證:△ABM≌△DBN;
(2)試探索BM和BN的關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCO是平行四邊形,OA=2,AB=6,點C在x軸的負半軸上,將ABCO繞點A逆時針旋轉得到ADEF,AD經(jīng)過點O,點F恰好落在x軸的正半軸上,若點D在反比例函數(shù)y= (x<0)的圖象上,則k的值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com