【題目】如圖①所示是一個長為,寬為的長方形,沿圖中虛線用剪刀均分成相等個小長方形.然后按圖②的方式拼成一個正方形.
(1)你認為圖②中的陰影部分的正方形的邊長等于 ;
(2)請用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積:
方法① ;
方法② ;
(3)觀察圖②,寫出,,這三個代數(shù)式之間的等量關(guān)系: ;
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:若,,求的值?
【答案】(1)m﹣n;(2)(m﹣n)2;(m+n)2﹣4mn;(3)(m﹣n)2=(m+n)2﹣4mn;(4)56.
【解析】
(1)平均分成后,每個小長方形的長為m,寬為n.由圖可知陰影正方形的邊長=小長方形的長-寬;
(2)第一種方法為:大正方形面積-4個小長方形面積,第二種表示方法為:陰影部分為小正方形的面積;
(3)根據(jù)(2)中表示的結(jié)果可求解;
(4)利用(a-b)2=(a+b)2-4ab可求解.
解:(1)圖②中的陰影部分的正方形的邊長等于m﹣n;
故答案為:m﹣n;
(2)圖②中陰影部分的面積:(m﹣n)2;
圖②中陰影部分的面積:(m+n)2﹣4mn;
故答案為:(m﹣n)2;(m+n)2﹣4mn;
(3)根據(jù)圖②,可得(m+n)2,(m﹣n)2,mn這三個代數(shù)式之間的等量關(guān)系為:
(m﹣n)2=(m+n)2﹣4mn;
(4)∵a﹣b=6,ab=5,
∴(a+b)2=(a﹣b)2+4ab=62+4×5=36+20=56.
科目:初中數(shù)學 來源: 題型:
【題目】下列滿足條件的三角形中,不是直角三角形的是( )
A.三內(nèi)角之比為1:2:3B.三內(nèi)角之比為3:4:5
C.三邊之比為3:4:5D.三邊之比為5:12:13
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是10×8的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長都是1個單位,線段的端點均在格點上,且點的坐標為,按下列要求用沒有刻度的直尺畫出圖形.
(1)請在圖中找到原點的位置,并建立平面直角坐標系;
(2)將線段平移到的位置,使與重合,畫出線段,然后作線段關(guān)于直線對稱線段,使的對應(yīng)點為,畫出線段;
(3)在圖中找到一個各點使,畫出并寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,點.
(1)①畫出線段關(guān)于軸對稱的線段;
②在軸上找一點使的值最小(保留作圖痕跡);
(2)按下列步驟,用不帶刻度的直尺在線段找一點使.
①在圖中取點,使得,且,則點的坐標為___________;
②連接交于點,則點即為所求.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是等邊三角形,為上兩點,且,延長至點,使,連接.
(1)如圖1,當兩點重合時,求證:;
(2)延長與交于點.
①如圖2,求證:;
②如圖3,連接,若,則的面積為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小巖打算購買氣球裝扮學!爱厴I(yè)典禮”活動會場氣球的種類有笑臉和愛心兩種,兩種氣球的價格不同,但同一種氣球的價格相同.由于會場布置需要,購買時以一束(4個氣球)為單位.已知第一束,第二束氣球的價格如圖所示,則第三束氣球的價格為( )
A.15元B.16元C.17元D.18元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AE⊥BC于M,FG⊥BC于N,∠1=∠2
(1)求證:AB∥CD;(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(x2﹣4x+2)(x2﹣4x+6)+4進行因式分解的過程
解:設(shè)x2﹣4x=y,
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16。ǖ诙剑
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)該同學第二步到第三步運用了因式分解的 (填序號).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學在第四步將y用所設(shè)中的x的代數(shù)式代換,得到因式分解的最后結(jié)果.這個結(jié)果是否分解到最后? .(填“是”或“否”)如果否,直接寫出最后的結(jié)果 .
(3)請你模仿以上方法嘗試對多項式(x2﹣2x)(x2﹣2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》是中國古代數(shù)學的重要著作,方程術(shù)是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩.問:牛、羊各直金幾何?”譯文:“假設(shè)有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩.問:每頭牛、每只羊各值金多少兩?”設(shè)每頭牛值金x兩,每只羊值金y兩,則列方程組錯誤的是( 。
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com