【題目】定義:如果兩條線段將一個(gè)三角形分成3個(gè)小等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.
(1)如圖1,在△ABC中,AB=AC,點(diǎn)D在AC邊上,且AD=BD=BC,求∠A的大小;
(2)在圖1中過(guò)點(diǎn)C作一條線段CE,使BD,CE是△ABC的三分線;在圖2中畫(huà)出頂角為45°的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù);
(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分線,點(diǎn)D在BC邊上,點(diǎn)E在AC邊上,且AD=BD,DE=CE,請(qǐng)直接寫(xiě)出∠C所有可能的值.
【答案】(1)∠A=36°;(2)如圖所示:見(jiàn)解析;(3)如圖所示:見(jiàn)解析;∠C為20°或40°的角.
【解析】
(1)利用等邊對(duì)等角得到三對(duì)角相等,設(shè)∠A=∠ABD=x,表示出∠BDC與∠C,列出關(guān)于x的方程,求出方程的解得到x的值,即可確定出∠A的度數(shù).
(2)根據(jù)(1)的解題過(guò)程作出△ABC的三等分線;45°自然想到等腰直角三角形,過(guò)底角一頂點(diǎn)作對(duì)邊的高,發(fā)現(xiàn)形成一個(gè)等腰直角三角形和直角三角形.直角三角形斜邊的中線可形成兩個(gè)等腰三角形;第二種情形以一底角作為新等腰三角形的底角,則另一底角被分為45°和22.5°,再以22.5°作為等腰三角形的底角,易得此時(shí)所得的三個(gè)三角形恰都為等腰三角形;
(3)用量角器,直尺標(biāo)準(zhǔn)作30°角,而后確定一邊為BA,一邊為BC,根據(jù)題意可以先固定BA的長(zhǎng),而后可確定D點(diǎn),再分別考慮AD為等腰三角形的腰或者底邊,兼顧A、E、C在同一直線上,易得2種三角形ABC;根據(jù)圖形易得∠C的值;
(1)∵AB=AC,
∴∠ABC=∠C,
∵BD=BC=AD,
∴∠A=∠ABD,∠C=∠BDC,
設(shè)∠A=∠ABD=x,則∠BDC=2x,∠C=,
可得2x=,
解得:x=36°,
則∠A=36°;
(2)根據(jù)(1)的解題過(guò)程作出△ABC的三等分線,如圖1;
由45°自然想到等腰直角三角形,有兩種情況,
①如圖2,過(guò)底角一頂點(diǎn)作對(duì)邊的高,形成一個(gè)等腰直角三角形和直角三角形.直角三角形斜邊的中線可形成兩個(gè)等腰三角形;
②如圖3,以一底角作為新等腰三角形的底角,則另一底角被分為45°和22.5°,再以22.5°作為等腰三角形的底角,易得此時(shí)所得的三個(gè)三角形恰都為等腰三角形;
(3)如圖4所示:
①當(dāng)AD=AE時(shí),
∵2x+x=30°+30°,
∴x=20°;
②當(dāng)AD=DE時(shí),
∵30°+30°+2x+x=180°,
∴x=40°;
綜上所述,∠C為20°或40°的角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張大伯計(jì)劃建一個(gè)面積為72平方米的矩形養(yǎng)雞場(chǎng),為了節(jié)約材料,雞場(chǎng)一邊靠著原有的一堵墻(墻長(zhǎng)15米),另外的部分(包括中間的隔墻)用30米的竹籬笆圍成,如圖.
(1)請(qǐng)你通過(guò)計(jì)算幫助張大伯設(shè)計(jì)出圍養(yǎng)雞場(chǎng)的方案.
(2)在上述條件不變的情況下,能圍出比72平方米更大的養(yǎng)雞場(chǎng)嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若,求證:A為EH的中點(diǎn).
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC與DE相交于點(diǎn)F,連接CD,EB.
(1)圖中還有幾對(duì)全等三角形,請(qǐng)你一一列舉;
(2)求證:CF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結(jié)論:①二次三項(xiàng)式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對(duì)稱軸是直線x=-1;⑤4a-2b+c<0.其中正確的結(jié)論有______________.(把所有正確結(jié)論的序號(hào)都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)勾股定理的證法多樣,其中“面積法”是常用方法,小明發(fā)現(xiàn):當(dāng)四個(gè)全等的直角三角形如圖擺放時(shí),可以用“面積法”來(lái)證明勾股定理.(寫(xiě)出勾股定理的內(nèi)容并證明)
(2)已知實(shí)數(shù)x,y,z滿足:,試問(wèn)長(zhǎng)度分別為x、y、z的三條線段能否組成一個(gè)三角形?如果能,請(qǐng)求出該三角形的面積;如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形ABCD中,O是AC與BD的交點(diǎn),過(guò)點(diǎn)O的直線EF與AB,CD的延長(zhǎng)線分別交于點(diǎn)E,F.
(1)求證:△BOE≌△DOF;
(2)當(dāng)EF與AC滿足什么條件時(shí),四邊形AECF是菱形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校開(kāi)展課外球類特色的體育活動(dòng),決定開(kāi)設(shè)A:羽毛球、B:籃球、C:乒乓球、 D:足球四種球類項(xiàng)目.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目(每人只選取一種),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如甲、乙所示的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問(wèn)題.
(1)樣本中最喜歡A項(xiàng)目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的圓心角度數(shù)是 度;
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有學(xué)生3000人,請(qǐng)根據(jù)樣本估計(jì)全校最喜歡足球的學(xué)生人數(shù)約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A(a,0)點(diǎn)B(b,0)為x軸上兩點(diǎn),點(diǎn)C在Y軸的正半軸上,且a,b滿足等式a2+2ab+b2=0.
(1)判斷△ABC的形狀并說(shuō)明理由;
(2)如圖2,M,N是OC上的點(diǎn),且∠CAM=∠MAN=∠NAB,延長(zhǎng)BN交AC于P,連接PM,判斷PM與AN的位置關(guān)系,并證明你的結(jié)論.
(3)如圖3,若點(diǎn)D為線段BC上的動(dòng)點(diǎn)(不與B,C重合),過(guò)點(diǎn)D作DE⊥AB于E,點(diǎn)G為線段DE上一點(diǎn),且∠BGE=∠ACB,F為AD的中點(diǎn),連接CF,FG.求證:CF⊥FG.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com