【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A(a,0)點(diǎn)B(b,0)為x軸上兩點(diǎn),點(diǎn)C在Y軸的正半軸上,且a,b滿足等式a2+2ab+b2=0.
(1)判斷△ABC的形狀并說(shuō)明理由;
(2)如圖2,M,N是OC上的點(diǎn),且∠CAM=∠MAN=∠NAB,延長(zhǎng)BN交AC于P,連接PM,判斷PM與AN的位置關(guān)系,并證明你的結(jié)論.
(3)如圖3,若點(diǎn)D為線段BC上的動(dòng)點(diǎn)(不與B,C重合),過(guò)點(diǎn)D作DE⊥AB于E,點(diǎn)G為線段DE上一點(diǎn),且∠BGE=∠ACB,F為AD的中點(diǎn),連接CF,FG.求證:CF⊥FG.
【答案】(1)△ABC是等腰三角形;(2)PM∥AN,證明見(jiàn)解析;(3)見(jiàn)解析
【解析】
(1)由題意可得a=-b,即OA=OB,根據(jù)線段垂直平分線的性質(zhì)可得AC=BC,即△ABC是等腰三角形;
(2)延長(zhǎng)AN交BC于點(diǎn)E,連接PM,過(guò)點(diǎn)M作MH⊥AE,MD⊥BP,MG⊥AC,根據(jù)等腰三角形的性質(zhì)可得∠NAB=∠NBA,∠ANO=∠BNO,可得∠PNC=∠CNE,根據(jù)角平分線的性質(zhì)可得PM平分∠CPB,根據(jù)三角形的外角的性質(zhì)可得∠CPM=∠CAN=2∠NAB,即可得PM∥AN;
(3)延長(zhǎng)GF至點(diǎn)M,使FM=FG,連接CG,CM,AM,由題意可證△AMF≌△DGF,可得AM=DG,由角的數(shù)量關(guān)系可得∠BCO=∠BDG=∠DBG,即DG=BG,根據(jù)“SAS”可證△AMC≌△BGC,可得CM=CG,根據(jù)等腰三角形性質(zhì)可得CF⊥FG.
解:(1)∵a2+2ab+b2=0,
∴(a+b)2=0,
∴a=-b,
∴OA=OB,且AB⊥OC,
∴OC是AB的垂直平分線,
∴AC=BC,
∴△ACB是等腰三角形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果兩條線段將一個(gè)三角形分成3個(gè)小等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.
(1)如圖1,在△ABC中,AB=AC,點(diǎn)D在AC邊上,且AD=BD=BC,求∠A的大。
(2)在圖1中過(guò)點(diǎn)C作一條線段CE,使BD,CE是△ABC的三分線;在圖2中畫(huà)出頂角為45°的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù);
(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分線,點(diǎn)D在BC邊上,點(diǎn)E在AC邊上,且AD=BD,DE=CE,請(qǐng)直接寫(xiě)出∠C所有可能的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)?jiān)谙铝袡M線上注明理由.
如圖,在中,點(diǎn),,在邊上,點(diǎn)在線段上,若,,點(diǎn)到和的距離相等.求證:點(diǎn)到和的距離相等.
證明:∵(已知),
∴(______),
∴(______),
∵(已知),
∴(______),
∵點(diǎn)到和的距離相等(已知),
∴是的角平分線(______),
∴(角平分線的定義),
∴(______),
即平分(角平分線的定義),
∴點(diǎn)到和的距離相等(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大圓的弦AB、AC分別切小圓于點(diǎn)M、N.
(1)求證:AB=AC;
(2)若AB=8,求圓環(huán)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,∠B=30°,O是線段AB上的一個(gè)動(dòng)點(diǎn),以O為圓心,OB為半徑作⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作直線AC的垂線,垂足為E.
(1)求證:DE是⊙O的切線;
(2)設(shè)OB=x,求∠ODE的內(nèi)部與△ABC重合部分的面積y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一條直線過(guò)點(diǎn)(0,4),且與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.
(1)求這條直線的解析式及點(diǎn)B的坐標(biāo);
(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)銷(xiāo)一種健身球,已知這種健身球的成本價(jià)為每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該種健身球每天的銷(xiāo)售量y(個(gè))與銷(xiāo)售單價(jià)x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷(xiāo)售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種健身球銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)如果物價(jià)部門(mén)規(guī)定這種健身球的銷(xiāo)售單價(jià)不高于28元,該商店銷(xiāo)售這種健身球每天要獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC=2,以AB為直徑的圓交BC于D,則圖中陰影部分的面積為( 。
A. 1 B. 2 C. 1+ D. 2﹣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com