【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)Aa,0)點(diǎn)Bb0)為x軸上兩點(diǎn),點(diǎn)CY軸的正半軸上,且a,b滿足等式a2+2ab+b2=0
1)判斷△ABC的形狀并說(shuō)明理由;
2)如圖2M,NOC上的點(diǎn),且∠CAM=MAN=NAB,延長(zhǎng)BNACP,連接PM,判斷PMAN的位置關(guān)系,并證明你的結(jié)論.
3)如圖3,若點(diǎn)D為線段BC上的動(dòng)點(diǎn)(不與B,C重合),過(guò)點(diǎn)DDEABE,點(diǎn)G為線段DE上一點(diǎn),且∠BGE=ACB,FAD的中點(diǎn),連接CF,FG.求證:CFFG

【答案】1)△ABC是等腰三角形;(2PMAN,證明見(jiàn)解析;(3)見(jiàn)解析

【解析】

1)由題意可得a=-b,即OA=OB,根據(jù)線段垂直平分線的性質(zhì)可得AC=BC,即△ABC是等腰三角形;

2)延長(zhǎng)ANBC于點(diǎn)E,連接PM,過(guò)點(diǎn)MMHAE,MDBPMGAC,根據(jù)等腰三角形的性質(zhì)可得∠NAB=NBA,∠ANO=BNO,可得∠PNC=CNE,根據(jù)角平分線的性質(zhì)可得PM平分∠CPB,根據(jù)三角形的外角的性質(zhì)可得∠CPM=CAN=2NAB,即可得PMAN
3)延長(zhǎng)GF至點(diǎn)M,使FM=FG,連接CG,CM,AM,由題意可證△AMF≌△DGF,可得AM=DG,由角的數(shù)量關(guān)系可得∠BCO=BDG=DBG,即DG=BG,根據(jù)“SAS”可證△AMC≌△BGC,可得CM=CG,根據(jù)等腰三角形性質(zhì)可得CFFG

解:(1)∵a2+2ab+b2=0,
∴(a+b2=0,
a=-b,
OA=OB,且ABOC,
OCAB的垂直平分線,
AC=BC,
∴△ACB是等腰三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果兩條線段將一個(gè)三角形分成3個(gè)小等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.

1)如圖1,在△ABC中,ABAC,點(diǎn)DAC邊上,且ADBDBC,求∠A的大。

2)在圖1中過(guò)點(diǎn)C作一條線段CE,使BDCE是△ABC的三分線;在圖2中畫(huà)出頂角為45°的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù);

3)在△ABC中,∠B30°,ADDE是△ABC的三分線,點(diǎn)DBC邊上,點(diǎn)EAC邊上,且ADBD,DECE,請(qǐng)直接寫(xiě)出∠C所有可能的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)?jiān)谙铝袡M線上注明理由.

如圖,在中,點(diǎn),,在邊上,點(diǎn)在線段上,若,,點(diǎn)的距離相等.求證:點(diǎn)的距離相等.

證明:∵(已知),

______),

______),

(已知),

______),

∵點(diǎn)的距離相等(已知),

的角平分線(______),

(角平分線的定義),

______),

平分(角平分線的定義),

∴點(diǎn)的距離相等(______).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(3,6)、B(9,一3),以原點(diǎn)O為位似中心,相似比為,把ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大圓的弦AB、AC分別切小圓于點(diǎn)MN

1)求證:AB=AC;

2AB8,求圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC=10,B=30°,O是線段AB上的一個(gè)動(dòng)點(diǎn),以O為圓心,OB為半徑作⊙OBC于點(diǎn)D,過(guò)點(diǎn)D作直線AC的垂線,垂足為E

1)求證:DE是⊙O的切線;

2)設(shè)OB=x,求∠ODE的內(nèi)部與ABC重合部分的面積y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一條直線過(guò)點(diǎn)(0,4),且與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.

(1)求這條直線的解析式及點(diǎn)B的坐標(biāo);

(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)過(guò)線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷(xiāo)一種健身球,已知這種健身球的成本價(jià)為每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該種健身球每天的銷(xiāo)售量y個(gè))與銷(xiāo)售單價(jià)x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷(xiāo)售利潤(rùn)為w元.

(1)求wx之間的函數(shù)關(guān)系式;

(2)該種健身球銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門(mén)規(guī)定這種健身球的銷(xiāo)售單價(jià)不高于28元,該商店銷(xiāo)售這種健身球每天要獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC=2,以AB為直徑的圓交BCD,則圖中陰影部分的面積為( 。

A. 1 B. 2 C. 1+ D. 2﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案