【題目】1)勾股定理的證法多樣,其中“面積法”是常用方法,小明發(fā)現(xiàn):當四個全等的直角三角形如圖擺放時,可以用“面積法”來證明勾股定理.(寫出勾股定理的內(nèi)容并證明)

2)已知實數(shù)xy,z滿足:,試問長度分別為xy、z的三條線段能否組成一個三角形?如果能,請求出該三角形的面積;如果不能,請說明理由.

【答案】1a2+b2=c2,證明見解析;(2)可以組成三角形,且為直角三角形,面積為6

【解析】

1)分別用兩種方法表示出五邊形的面積,然后建立等式即可得出勾股定理;

2)先根據(jù)二次根式有意義的條件和非負性建立方程組求出x,y,z的值,然后利用勾股定理的逆定理判斷三邊是否滿足,如果滿足則能組成直角三角形,反之則不能,如果能,再利用三角形的面積公式計算面積即可.

1)∵S五邊形面積=S梯形面積1+S梯形面積2=S正方形面積+2S直角三角形面積,

,

即:a2+b2=c2;

2)根據(jù)二次根式的意義,得

解得:x+y=8,

0

根據(jù)非負數(shù)的意義,得

解得:x=3,y=5,z=4

32+42=52

∴可以組成三角形,且為直角三角形,面積為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,∠AOC=30°,⊙P的半徑為1cm,且OP=6cm,如果P以1cm/s的速度沿由A向B的方向移動,那么多少秒后P與直線CD相切( 。

A. 4或8 B. 4或6 C. 8 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△PDC⊙O的內(nèi)接三角形,CP=CD,若將△PCD繞點P順時針旋轉(zhuǎn),當點C剛落在⊙O上的A處時,停止旋轉(zhuǎn),此時點D落在點B處.

(1)求證:PB⊙O相切;

(2)當PD=2,∠DPC=30°時,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題(不寫作法,保留作圖痕跡)

1)如圖1請利用直尺和圓規(guī)作線段AB的中垂線EF

2)如圖2請利用直尺和圓規(guī)作∠AOB的角平分線OC;

3)如圖3,要在公路MN上修一個車站P,使得PAB兩個地方的距離和最小,請利用直尺和圓規(guī)畫出P的位置;

4)如圖4,已知∠AOB及點C、D兩點,請利用直尺和圓規(guī)作一點P,使得點P到射線OA、OB的距離相等,且P點到點C、D的距離也相等;

5)如圖5,利用網(wǎng)狀格畫出△ABC關(guān)于直線l的對稱圖形△A'B'C'

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果兩條線段將一個三角形分成3個小等腰三角形,我們把這兩條線段叫做這個三角形的三分線.

1)如圖1,在△ABC中,ABAC,點DAC邊上,且ADBDBC,求∠A的大。

2)在圖1中過點C作一條線段CE,使BD,CE是△ABC的三分線;在圖2中畫出頂角為45°的等腰三角形的三分線,并標注每個等腰三角形頂角的度數(shù);

3)在△ABC中,∠B30°,ADDE是△ABC的三分線,點DBC邊上,點EAC邊上,且ADBD,DECE,請直接寫出∠C所有可能的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.學(xué)校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有   人,在扇形統(tǒng)計圖中,m的值是   

(2)將條形統(tǒng)計圖補充完整;

(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩城相距600千米,甲、乙兩車同時從A城出發(fā)駛向B城,甲車到達B城后立即返回.如圖是它們離A城的距離y(千米)與行駛時間 x(小時)之間的函數(shù)圖象.

(1)求甲車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;

(2)當它們行駛了7小時時,兩車相遇,求乙車速度及乙車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;

(3)當兩車相距100千米時,求甲車行駛的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形紙片中,,點是邊上的一點,將紙片沿折疊,點落在處,恰好經(jīng)過的中點,則的度數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10,B=30°,O是線段AB上的一個動點,以O為圓心,OB為半徑作⊙OBC于點D,過點D作直線AC的垂線,垂足為E

1)求證:DE是⊙O的切線;

2)設(shè)OB=x,求∠ODE的內(nèi)部與ABC重合部分的面積y的最大值.

查看答案和解析>>

同步練習冊答案