【題目】如圖,正方形ABCD的對角線交于點O,點E、F分別在AB、BC上(AEBE),且EOF=90°,OE、DA的延長線交于點M,OF、AB的延長線交于點N,連接MN.

(1)求證:OM=ON.

(2)若正方形ABCD的邊長為4,E為OM的中點,求MN的長.

【答案】(1)見解析;(2)MN =2

【解析】

1)證△OAM≌△OBN即可得;

2)作OHAD,由正方形的邊長為4EOM的中點知OH=HA=2HM=4,再根據(jù)勾股定理得OM=2 ,由直角三角形性質(zhì)知MN=OM=2

1)∵四邊形ABCD是正方形,

OA=OB,∠DAO=45°,∠OBA=45°,

∴∠OAM=∠OBN=135°,

∵∠EOF=90°,∠AOB=90°,

∴∠AOM=BON,

∴△OAM≌△OBNASA),

OM=ON;

2)如圖,過點OOHAD于點H

∵正方形的邊長為4,

OH=HA=2

EOM的中點,

HM=4,

OM==2

MN=OM=2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直徑為 10cm 的⊙O 中,兩條弦 AB,CD 分別位于圓心的異側(cè),ABCD,且,若 AB=8cm,則 CD 的長為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=90°,ADBC,BECDEAD的延長線于F,DC=2AD,ABBE

(1)求證:ADDE

(2)求證:四邊形BCFD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有除顏色外其余均相同的5個小球,其中紅球3個,黑球2個.

(1)若先從袋中取出xx>0)個紅球,再從袋子中隨機摸出1個球,將摸出黑球記為事件A,若A為必然事件,則x的值為   

(2)若從袋中隨機摸出2個球,正好紅球、黑球各1個,用畫樹狀圖或列表法求這個事件的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,ABC=120°,將菱形折疊,使點A恰好落在對角線BD上的點G處(不與B、D重合),折痕為EF,若DG=2,BG=6,則BE的長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)商店以2元的批發(fā)價進了一批紀念品.經(jīng)調(diào)查發(fā)現(xiàn),每個定價3元,每天可以能賣出500件,而且定價每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀念品售價不能超過批發(fā)價的2.5倍.

1)當每個紀念品定價為3.5元時,商店每天能賣出________件;

2)如果商店要實現(xiàn)每天800元的銷售利潤,那該如何定價?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學完二次函數(shù)的圖像及其性質(zhì)后,老師讓學生們說出的圖像的一些性質(zhì),小亮說:“此函數(shù)圖像開口向上,且對稱軸是”;小麗說:“此函數(shù)肯定與x軸有兩個交點”;小紅說:“此函數(shù)與y軸的交點坐標為(0,-3)”;小強說:“此函數(shù)有最小值, ”……請問這四位同學誰說的結(jié)論是錯誤的(   )

A. 小亮 B. 小麗 C. 小紅 D. 小強

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點在第一象限,軸于,軸于,,有一反比例函數(shù)圖象剛好過點

1)分別求出過點的反比例函數(shù)和過兩點的一次函數(shù)的函數(shù)表達式;

2)直線軸,并從軸出發(fā),以每秒個單位長度的速度向軸正方向運動,交反比例函數(shù)圖象于點,交于點,交直線于點,當直線運動到經(jīng)過點時,停止運動.設(shè)運動時間為(秒).

①問:是否存在的值,使四邊形為平行四邊形?若存在,求出的值;若不存在,說明理由;

②若直線軸出發(fā)的同時,有一動點從點出發(fā),沿射線方向,以每秒個單位長度的速度運動.是否存在的值,使以點,,,為頂點的四邊形為平行四邊形;若存在,求出的值,并進一步探究此時的四邊形是否為特殊的平行四邊形;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一座人行天橋引橋部分的示意圖,上橋通道ADBE,水平平臺DE和地面AC平行,立柱BC和地面AC垂直,A=37°.已知天橋的高度BC為4.8米,引橋的水平跨度AC為8米,求水平平臺DE的長度.(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

同步練習冊答案