【題目】如圖,在菱形ABCD中,ABC=120°,將菱形折疊,使點A恰好落在對角線BD上的點G處(不與B、D重合),折痕為EF,若DG=2,BG=6,則BE的長為______

【答案】2.8

【解析】

EH⊥BDH,根據(jù)折疊的性質(zhì)得到EG=EA,根據(jù)菱形的性質(zhì)、等邊三角形的判定定理得到△ABD為等邊三角形,得到AB=BD,根據(jù)勾股定理列出方程,解方程即可.

解:作EH⊥BDH ,

由折疊的性質(zhì)可知,EG=EA,

由題意得,BD=DG+BG=8,

四邊形ABCD是菱形,

∴AB=BD,∠ABD=∠CBD=∠ABC=60°

∴△ABD為等邊三角形,

AB=BD=8,

BE=x,則EG=AE=8-x,

Rt△EHB中,BH=x,EH=x ,

Rt△EHG中,EG2=EH2+GH2,即(8-x)2=(x)2+(6-x)2

解得,x=2.8,即BE=2.8,

故答案為:2.8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為進一步發(fā)展基礎教育,自2016年以來,某縣加大了教育經(jīng)費的投入.2016年該縣投入教育經(jīng)費6000萬元,2018年投入教育經(jīng)費8640萬元,假設該縣這兩年投入教育經(jīng)費的年平均增長率相同.

(1)求這兩年該縣投入教育經(jīng)費的年平均增長率;

(2)若該縣教育經(jīng)費的投入還將保持相同的年平均增長率,請你預算2019年該縣教育經(jīng)費多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課本中有一道作業(yè)題:

有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?

小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.

1)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少mm?請你計算.

2)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達到這個最大值時矩形零件的兩條邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+x﹣2與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,直線l經(jīng)過A,C兩點,連接BC.

(1)求直線l的解析式;

(2)若直線x=m(m0)與該拋物線在第三象限內(nèi)交于點E,與直線l交于點D,連接OD.當ODAC時,求線段DE的長;

(3)取點G(0,﹣1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑為5,ABC是⊙O的內(nèi)接三角形,AB=8.AD和過點B的切線互相垂直,垂足為D

(1)求證:∠BAD+C=90°;

(2)求線段AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線交于點O,點E、F分別在AB、BC上(AEBE),且EOF=90°,OE、DA的延長線交于點M,OF、AB的延長線交于點N,連接MN.

(1)求證:OM=ON.

(2)若正方形ABCD的邊長為4,E為OM的中點,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點C是以AB為直徑的⊙O上一點,直線AC與過B點的切線相交于D,點EBD的中點,直線CE交直線AB于點F.

(1)求證:CF是⊙O的切線;

(2)ED=3,EF=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】位于河南省鄭州市的炎黃二帝巨型塑像,是為代表中華民族之創(chuàng)始、之和諧、之統(tǒng)一.塑像由山體CD和頭像AD兩部分組成.某數(shù)學興趣小組在塑像前50米處的B處測得山體D處的仰角為45°,頭像A處的仰角為70.5°,求頭像AD的高度.(最后結果精確到0.1米,參考數(shù)據(jù):sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

查看答案和解析>>

同步練習冊答案