【題目】如圖,矩形ABCD中,AD=10,AB=8,點E為邊DC上一動點,連接AE,把△ADE沿AE折疊,使點D落在點D′處,當△DD′C是直角三角形時,DE的長為_____.
【答案】4或5.
【解析】
∵△ADE沿AE折疊,使點D落在點D′處,
∴DE=D′E,AD=AD′=10,
(1)當∠DD′C=90°時,如圖1,
∵DE=D′E,
∴∠1=∠2,
∵∠1+∠4=90°,∠2+∠3=90°,
∴∠3=∠4,
∴ED′=EC,
∴DE=EC=CD=4;
(2)當∠DCD′=90°時,則點D′落在BC上,如圖2,
設DE=x,則ED′=x,CE=8﹣x,
∵AD′=AD=10,
∴在Rt△ABD′中,BD′==6,
∴CD′=4,
在Rt△CED′中,(8﹣x)2+42=x2,解得x=5,
即DE的長為5,
綜上所述,當△DD′C是直角三角形時,DE的長為4或5.
故答案為4或5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=5,AD=BC=13,點E為射線AD上的一個動點,若△ABE與△A'BE關于直線BE對稱,當△A'BC為直角三角形時,AE的長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在△ABC中,BF、CF是角平分線,DE∥BC,分別交AB、AC于點D、E,DE經(jīng)過點F.結論:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長=AB+AC;④BF=CF.其中正確的是______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一艘救生船在碼頭A接到小島C處一艘漁船的求救信號,立即出發(fā),沿北偏東67°方向航行10海里到達小島C處,將人員撤離到位于碼頭A正東方向的碼頭B,測得小島C位于碼頭B的北偏西53°方向,求碼頭A與碼頭B的距離.【參考數(shù)據(jù):sin23°≈0.39,cos23°≈0.92,tan23°≈0.42,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75】
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ ABC中,AB=AC,∠ BAC=90°,直角∠ EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,給出以下四個結論:①AE=CF;②△ EPF是等腰直角三角形; ③2S四邊形AEPF=S△ ABC; ④BE+CF=EF.當∠ EPF在△ ABC內(nèi)繞頂點P旋轉時(點E與A、B重合).上述結論中始終正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明學習電學知識后,用四個開關按鍵(每個開關按鍵閉合的可能性相等)、一個電源和一個燈泡設計了一個電路圖
(1)若小明設計的電路圖如圖1(四個開關按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個開關按鍵,燈泡能發(fā)光的概率;
(2)若小明設計的電路圖如圖2(四個開關按鍵都處于打開狀態(tài))如圖所示,求同時時閉合其中的兩個開關按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場準備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.
(1)求A、B型號衣服進價各是多少元?
(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com