【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
【答案】見(jiàn)解析.
【解析】試題分析:(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;
(2)由全等三角形的性質(zhì)得AF=BC,由等腰三角形的性質(zhì)“三線合一”得BC=2CD,等量代換得出結(jié)論.
試題解析:(1)∵AD⊥BC,CE⊥AB,
∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,
∴∠CFD=∠B,
∵∠CFD=∠AFE,
∴∠AFE=∠B
在△AEF與△CEB中,
∠AFE=∠B,∠AEF=∠CEB,AE=CE,
∴△AEF≌△CEB(AAS);
(2)∵AB=AC,AD⊥BC,
∴BC=2CD,
∵△AEF≌△CEB,
∴AF=BC,
∴AF=2CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索與證明:(1)如圖1,直線m經(jīng)過(guò)正三角形ABC的頂點(diǎn)A,在直線m上取兩點(diǎn) D,E,使得∠ADB=60°,∠AEC=60°.通過(guò)觀察或測(cè)量,猜想線段BD,CE與DE之間滿(mǎn)足的數(shù)量關(guān)系,并予以證明;
(2)將(1)中的直線m繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度到如圖2的位置,并使∠ADB=120°,∠AEC=120°.通過(guò)觀察或測(cè)量,請(qǐng)直接寫(xiě)出線段BD,CE與DE之間滿(mǎn)足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果兩點(diǎn)A(2,a)和B(x,b)在拋物線y=x2﹣4x+m上,那么a和b的大小關(guān)系為:a_____b.(從“>”“≥”“<”“≤”中選擇).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般地,一個(gè)含有未知數(shù)的不等式的,組成這個(gè)不等式的解集.求不等式的解集的過(guò)程叫做.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC=90°,D、E分別在BC、AC上,AD⊥DE,且AD=DE,點(diǎn)F是AE的中點(diǎn),F(xiàn)D與AB相交于點(diǎn)M.
(1)求證:∠FMC=∠FCM;
(2)AD與MC垂直嗎?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形的邊長(zhǎng)為a,若邊長(zhǎng)增加x,則面積增加( )
A. (a+x)2 -a2 B. (a-x)2+a2 C. (a+x)2+x2 D. (a-x)2 -x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年3月全國(guó)兩會(huì)政府工作報(bào)告中指出:城鎮(zhèn)新增就業(yè)人數(shù)超過(guò)6400萬(wàn)人,城鎮(zhèn)保障性安居工程住房建設(shè)4013萬(wàn)套,上億群眾喜遷新居.將6400萬(wàn)用科學(xué)記數(shù)法表示為( 。
A.6.4×107
B.6.4×108
C.6.4×103
D.64×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,已知∠A+∠B=∠C,則△ABC是( )
A.直角三角形
B.銳角三角形
C.鈍角三角形
D.無(wú)法確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com