相關習題
 0  265468  265476  265482  265486  265492  265494  265498  265504  265506  265512  265518  265522  265524  265528  265534  265536  265542  265546  265548  265552  265554  265558  265560  265562  265563  265564  265566  265567  265568  265570  265572  265576  265578  265582  265584  265588  265594  265596  265602  265606  265608  265612  265618  265624  265626  265632  265636  265638  265644  265648  265654  265662  266669 

科目: 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸建立極坐標系,點的極坐標,曲線的極坐標方程為

(1)求直線的普通方程和曲線的直角坐標方程;

(2)若為曲線上的動點,求中點到直線的距離最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率為,焦點分別為,點是橢圓上的點,面積的最大值是

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于兩點,點是橢圓上的點,是坐標原點,若判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】設雙曲線 的左右焦點分別為,過的直線分別交雙曲線左右兩支于點M,N.若以MN為直徑的圓經(jīng)過點,則雙曲線的離心率為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】定義在上的函數(shù),如果存在函數(shù),為常數(shù)),使得對一切實數(shù)都成立則稱為函數(shù)的一個承托函數(shù).現(xiàn)有如下函數(shù):①;②;③;④.則存在承托函數(shù)的的序號為______.(填入滿足題意的所有序號)

查看答案和解析>>

科目: 來源: 題型:

【題目】某區(qū)在2019年教師招聘考試中,參加、、四個崗位的應聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:

崗位

男性應聘人數(shù)

男性錄用人數(shù)

男性錄用比例

女性應聘人數(shù)

女性錄用人數(shù)

女性錄用比例

269

167

62%

40

24

60%

217

69

32%

386

121

31%

44

26

59%

38

22

58%

3

2

67%

3

2

67%

總計

533

264

50%

467

169

36%

1)從表中所有應聘人員中隨機抽取1人,試估計此人被錄用的概率;

2)將應聘崗位的男性教師記為,女性教師記為,現(xiàn)從應聘崗位的6人中隨機抽取2.

i)試用所給字母列舉出所有可能的抽取結果;

ii)設為事件抽取的2人性別不同,求事件發(fā)生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率為,橢圓經(jīng)過點.

(1)求橢圓的標準方程;

(2)設點是橢圓上的任意一點,射線與橢圓交于點,過點的直線與橢圓有且只有一個公共點,直線與橢圓交于兩個相異點,證明:面積為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系中,圓,圓.以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

(1)求圓,的極坐標方程;

(2)設,分別為,上的點,若為等邊三角形,求.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知四邊形ABCD為邊長等于的正方形,PA⊥平面ABCD,QCPA,且異面直線QDPA所成的角為30°,則四棱錐QABCD外接球的表面積等于( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】2018年1月31日晚上月全食的過程分為初虧、食既、食甚、生光、復圓五個階段,月食的初虧發(fā)生在19時48分,20時51分食既,食甚時刻為21時31分,22時08分生光,直至23時12分復圓.全食伴隨有藍月亮和紅月亮,全食階段的“紅月亮”將在食甚時刻開始,生光時刻結東,一市民準備在19:55至21:56之間的某個時刻欣賞月全食,則他等待“紅月亮”的時間不超過30分鐘的概率是( )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)設函數(shù).若存在區(qū)間,使得函數(shù)上的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案