己知函數(shù) .
(I)求的極大值和極小值;
(II)當(dāng)時,恒成立,求的取值范圍.
(I)的極大值為和;的極小值為.(II)的取值范圍是.
解析試題分析:(I) 易知函數(shù)定義域為,在上討論的極值先求導(dǎo),列出的正負(fù)表,再根據(jù)函數(shù)的單調(diào)性和極值與倒數(shù)的關(guān)系即可求出極值.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知 ().
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù)(其中為常數(shù)).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),其中.
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù),.
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù).
科目:高中數(shù)學(xué)
來源:
題型:解答題
已知函數(shù),.
科目:高中數(shù)學(xué)
來源:
題型:解答題
設(shè)函數(shù),.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
(II) 本題是不等式恒成立求參數(shù)范圍問題,一般思路是化簡-分類討論,但本題中化簡后為,如果用即換元后為討論起來更簡單.分別討論?時,化簡為;?時,恒成立;?時化簡為三種情況,運(yùn)用均值不等式求出范圍即可.
試題解析:(I) 函數(shù),知定義域為,.
所以的變化情況如下:+ 0 - 0 + 0 - 遞增 極大值 遞減 極小值
(Ⅰ)當(dāng)時,判斷在定義域上的單調(diào)性;
(Ⅱ)若在上的最小值為,求的值;
(Ⅲ)若在上恒成立,試求的取值范圍.
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,設(shè)函數(shù)的3個極值點為,且.證明:.
(1)當(dāng)時判斷的單調(diào)性;
(2)若在其定義域為增函數(shù),求正實數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時,若,總有成立,求實數(shù)的取值范圍.
(1)討論函數(shù)的單調(diào)性;
(2)若存在,使得成立,求滿足上述條件的最大整數(shù);
(3)如果對任意的,都有成立,求實數(shù)的取值范圍.
(1)試求函數(shù)的單調(diào)區(qū)間和極值;
(2)若 直線與曲線相交于不同兩點,若 試證明.
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)點為函數(shù)的圖象上任意一點,若曲線在點處的切線的斜率恒大于,
求的取值范圍.
(1)記為的導(dǎo)函數(shù),若不等式 在上有解,求實數(shù)的取值范圍;
(2)若,對任意的,不等式恒成立,求m(m∈Z,m1)的值.
版權(quán)聲明:本站所有文章,圖片來源于網(wǎng)絡(luò),著作權(quán)及版權(quán)歸原作者所有,轉(zhuǎn)載無意侵犯版權(quán),如有侵權(quán),請作者速來函告知,我們將盡快處理,聯(lián)系qq:3310059649。
ICP備案序號: 滬ICP備07509807號-10 鄂公網(wǎng)安備42018502000812號