【題目】已知函數(shù),下列說法正確的是__________.的值域是;當(dāng)時(shí),方程有兩個(gè)不等實(shí)根;若函數(shù)有三個(gè)零點(diǎn)時(shí),則;經(jīng)過有三條直線與相切.
【答案】①②③
【解析】
①:結(jié)合導(dǎo)數(shù),用函數(shù)的單調(diào)性和奇偶性,求得的值域;②利用導(dǎo)數(shù),證得方程有兩個(gè)不等實(shí)根;③根據(jù)為偶函數(shù),故可先考慮的情況,再由對稱性得到的情況.當(dāng)時(shí),首先確定是函數(shù)的零點(diǎn),令,分離常數(shù),利用導(dǎo)數(shù)求得的取值范圍.再根據(jù)對稱性,求得的取值范圍.④利用導(dǎo)數(shù),求得過的切線的條數(shù).
①函數(shù)的定義域?yàn)?/span>,且,所以為偶函數(shù),圖像關(guān)于軸對稱.當(dāng)時(shí),,,.令解得,所以在上遞減,在上遞增,,所以,所以在上單調(diào)遞增,從而.由于為偶函數(shù),所以在上單調(diào)遞減,且.所以的值域是.故①正確.
②顯然,是方程的根.方程可化為.當(dāng)時(shí),即.根據(jù)①的分析,結(jié)合圖像可知,當(dāng)時(shí)與的圖像沒有公共點(diǎn).故只需考慮的情況.由得,即.構(gòu)造函數(shù),,,令,解得.所以在上遞減,在上遞增,且,所以存在,使得.故在上遞減,在上遞增.,所以存在,使.綜上所述,當(dāng)時(shí),方程有兩個(gè)不等實(shí)根成立,故②正確.
③為偶函數(shù),故可先考慮的情況.當(dāng)時(shí),函數(shù)為,故方程有三個(gè)不相等的實(shí)數(shù)根.首先是方程的根.
先證:令,,,令解得.所以在上遞減,在上遞增.,當(dāng),.若,即,則在區(qū)間上先減后增,在區(qū)間上至多只有兩個(gè)零點(diǎn),不符合題意.故.
故下證:當(dāng)時(shí),由得有兩個(gè)不同的實(shí)數(shù)根.構(gòu)造函數(shù),.令,,,所以在上單調(diào)遞增,所以當(dāng)時(shí),.所以由可知在上遞減,在上遞增,所以在處取得極小值也即是最小值,所以.
綜上所述,的取值范圍是.由于為偶函數(shù),根據(jù)函數(shù)圖像的對稱性可知的取值范圍是.故③正確.
④當(dāng)時(shí),設(shè)經(jīng)過點(diǎn)的切線的切點(diǎn)為,,,故切線方程為,將代入上式得,化簡得.令,,,所以在上單調(diào)遞增.所以方程解得或.所以當(dāng)時(shí),有兩條切線.根據(jù)為偶函數(shù),所以當(dāng)時(shí),也有兩條切線方程. 所以經(jīng)過有四條直線與相切,④錯(cuò)誤.
特別的,當(dāng)時(shí),,,即當(dāng)時(shí),在處的切線的斜率為.當(dāng)時(shí),,即當(dāng)時(shí),在處的切線的斜率為.
故答案為:①②③
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校健康社團(tuán)為調(diào)查本校大學(xué)生每周運(yùn)動的時(shí)長,隨機(jī)選取了80名學(xué)生,調(diào)查他們每周運(yùn)動的總時(shí)長(單位:小時(shí)),按照共6組進(jìn)行統(tǒng)計(jì),得到男生、女生每周運(yùn)動的時(shí)長的統(tǒng)計(jì)如下(表1、2),規(guī)定每周運(yùn)動15小時(shí)以上(含15小時(shí))的稱為“運(yùn)動合格者”,其中每周運(yùn)動25小時(shí)以上(含25小時(shí))的稱為“運(yùn)動達(dá)人”.
表1:男生
時(shí)長 | ||||||
人數(shù) | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
時(shí)長 | ||||||
人數(shù) | 0 | 4 | 12 | 12 | 8 | 4 |
(1)從每周運(yùn)動時(shí)長不小于20小時(shí)的男生中隨機(jī)選取2人,求選到“運(yùn)動達(dá)人”的概率;
(2)根據(jù)題目條件,完成下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為本校大學(xué)生是否為“運(yùn)動合格者”與性別有關(guān).
每周運(yùn)動的時(shí)長小于15小時(shí) | 每周運(yùn)動的時(shí)長不小于15小時(shí) | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) |
參考公式:,其中.
參考數(shù)據(jù):
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面是等邊三角形,且平面平面,為的中點(diǎn),,,,.
(1)求證:平面;
(2)求二面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒有發(fā)生大規(guī)模群體感染的標(biāo)志是“連續(xù)10日,每天新增疑似病例不超過7人”.過去10日,甲、乙、丙、丁四地新增疑似病例數(shù)據(jù)信息如下:
甲地:總體平均數(shù)為3,中位數(shù)為4;
乙地:總體平均數(shù)為1,總體方差大于0;
丙地:總體平均數(shù)為2,總體方差為3;
丁地:中位數(shù)為2,眾數(shù)為3;
則甲、乙、兩、丁四地中,一定沒有發(fā)生大規(guī)模群體感染的是( )
A.甲地B.乙地C.丙地D.丁地
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三學(xué)生為了迎接高考,要經(jīng)常進(jìn)行模擬考試,鍛煉應(yīng)試能力,某學(xué)生從升入高三到高考要參加10次模擬考試,下面是高三第一學(xué)期某學(xué)生參加5次模擬考試的數(shù)學(xué)成績表:
模擬考試第x次 | 1 | 2 | 3 | 4 | 5 |
考試成績y分 | 90 | 100 | 105 | 105 | 100 |
(1)已知該考生的模擬考試成績y與模擬考試的次數(shù)x滿足回歸直線方程,若高考看作第11次模擬考試,試估計(jì)該考生的高考數(shù)學(xué)成績;
(2)把這5次模擬考試的數(shù)學(xué)成績單放在5個(gè)相同的信封中,從中隨機(jī)抽取3份試卷的成績單進(jìn)行研究,設(shè)抽取考試成績不等于平均值的個(gè)數(shù)為,求出的分布列與數(shù)學(xué)期望.
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左、右焦點(diǎn)分別是,點(diǎn),若的內(nèi)切圓的半徑與外接圓的半徑的比是.
(1)求橢圓C的方程;
(2)點(diǎn)M是橢圓C的左頂點(diǎn),P、Q是橢圓上異于左、右頂點(diǎn)的兩點(diǎn),設(shè)直線MP、MQ的斜率分別為、,若,試問直線PQ是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,,,為正三角形,且.
(1)證明:直線平面;
(2)若四棱錐的體積為,是線段的中點(diǎn),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在上,以為切點(diǎn)的的切線的斜率為,過外一點(diǎn)(不在軸上)作的切線、,點(diǎn)、為切點(diǎn),作平行于的切線(切點(diǎn)為),點(diǎn)、分別是與、的交點(diǎn)(如圖):
(1)用、的縱坐標(biāo)、表示直線的斜率;
(2)若直線與的交點(diǎn)為,證明是的中點(diǎn);
(3)設(shè)三角形面積為,若將由過外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做“切線三角形”,如,再由、作“切線三角形”,并依這樣的方法不斷作切線三角形……,試?yán)?/span>“切線三角形”的面積和計(jì)算由拋物線及所圍成的陰影部分的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)三口之家,共個(gè)大人,個(gè)小孩,約定星期日乘紅色、白色兩輛轎車結(jié)伴郊游,每輛車最多乘坐人,其中兩個(gè)小孩不能獨(dú)坐一輛車,則不同的乘車方法種數(shù)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com