【題目】如圖,四棱錐中,,,,為正三角形,且.
(1)證明:直線平面;
(2)若四棱錐的體積為,是線段的中點,求直線與平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)證明,,推出平面;
(2)以為原點,直線、分別為軸,軸,建立空間直角坐標系,求出各點的坐標,由(1)的結(jié)論知,平面,所以則向量與向量所成的角或其補角與直線與平面所成的角互余,計算結(jié)果即可.
(1),且,,
又為正三角形,所以,
又,,所以,又,//,
,,所以平面.
(2)設(shè)點到平面的距離為,則,依題可得,以為原點,直線、分別為軸,軸,建立空間直角坐標系,分別求出各點的坐標和向量,由(1)可知平面,故向量是平面的一個法向量,則向量與向量所成的角或其補角與直線與平面所成的角互余.
則,,,,則,設(shè),
由,,可得,解得,,
即,
所以,又由(1)可知,是平面的一個法向量,
∴,
所以直線與平面所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標依次是,(如圖,的坐標以已知條件為準),表示青蛙從點到點所經(jīng)過的路程.
(1)點為拋物線準線上一點,點,均在該拋物線上,并且直線經(jīng)過該拋物線的焦點,證明;
(2)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,試寫出(不需證明);
(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列說法正確的是__________.的值域是;當(dāng)時,方程有兩個不等實根;若函數(shù)有三個零點時,則;經(jīng)過有三條直線與相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】日照一中為了落實“陽光運動一小時”活動,計劃在一塊直角三角形ABC的空地上修建一個占地面積為S的矩形AMPN健身場地.如圖,點M在AC上,點N在AB上,且P點在斜邊BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)試用x表示S,并求S的取值范圍;
(2)若在矩形AMPN以外(陰影部分)鋪上草坪.已知:矩形AMPN健身場地每平方米的造價為,草坪的每平方米的造價為(k為正常數(shù)).設(shè)總造價T關(guān)于S的函數(shù)為T=f(S),試問:如何選取|AM|的長,才能使總造價T最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(文科)已知四棱錐的底面ABCD為直角梯形,,,,為正三角形.
(1)點M為棱AB上一點,若平面SDM,,求實數(shù)λ的值;
(2)若,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:(),過原點的兩條直線和分別與交于點、和、,得到平行四邊形.
(1)若,,且為正方形,求該正方形的面積.
(2)若直線的方程為,和關(guān)于軸對稱,上任意一點到和的距離分別為和,證明:.
(3)當(dāng)為菱形,且圓內(nèi)切于菱形時,求,滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列滿足.
①存在可以生成的數(shù)列是常數(shù)數(shù)列;
②“數(shù)列中存在某一項”是“數(shù)列為有窮數(shù)列”的充要條件;
③若為單調(diào)遞增數(shù)列,則的取值范圍是;
④只要,其中,則一定存在;
其中正確命題的序號為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com