【題目】如圖,在多面體中,為矩形,為等腰梯形,,,,且,平面平面,,分別為,的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)若,求多面體的體積.

【答案】(Ⅰ)證明見解析;(Ⅱ).

【解析】

(Ⅰ)取的中點(diǎn).連接,,可證,,然后利用平面平面,可證平面.(Ⅱ)將多面體分為四棱錐和三棱錐兩部分,將轉(zhuǎn)化為,然后利用四棱錐和三棱錐的體積公式分別求出然后求和即可.

解:(Ⅰ)如圖,取的中點(diǎn).連接,.

在矩形中,∵,分別為線段,的中點(diǎn),

.

平面,平面,

平面.

中,∵,分別為線段的中點(diǎn),

.

平面,平面,

平面.

平面

∴平面平面

平面,∴平面.

(Ⅱ)如圖,過點(diǎn).

∵平面平面,平面平面平面,

平面.

同理平面.

連接.中,∵,,

.

同理.

,∴等邊的高為,即.

連接.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會(huì)中, 為了提高安保的級別同時(shí)又為了方便接待,現(xiàn)將其中的五個(gè)參會(huì)國的人員安排酒店住宿,這五個(gè)參會(huì)國要在、三家酒店選擇一家,且每家酒店至少有一個(gè)參會(huì)國入住,則這樣的安排方法共有

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于素?cái)?shù)p,定義集合 .

.試求所有的素?cái)?shù)p,使得

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程是,曲線的極坐標(biāo)方程是

1)求直線l和曲線的直角坐標(biāo)方程,曲線的普通方程;

2)若直線l與曲線和曲線在第一象限的交點(diǎn)分別為P,Q,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=4x與橢圓E1ab0)有一個(gè)公共焦點(diǎn)F.設(shè)拋物線C與橢圓E在第一象限的交點(diǎn)為M.滿足|MF|.

1)求橢圓E的標(biāo)準(zhǔn)方程;

2)過點(diǎn)P1)的直線交拋物線CA、B兩點(diǎn),直線PO交橢圓E于另一點(diǎn)Q.PAB的中點(diǎn),求△QAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)過點(diǎn),傾斜角為的直線l與曲線C相交于M,N兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點(diǎn)為,點(diǎn)為拋物線上的動(dòng)點(diǎn),點(diǎn)為其準(zhǔn)線上的動(dòng)點(diǎn),當(dāng)為等邊三角形時(shí),則的外接圓的方程為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過隨機(jī)調(diào)查200名高中生是否愛好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正確結(jié)論是(

A. 99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)

B. 99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

C. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合,對于正整數(shù)m,集合S的任一m元子集中必有一個(gè)數(shù)為另外m-1個(gè)數(shù)乘積的約數(shù).則m的最小可能值為__________。

查看答案和解析>>

同步練習(xí)冊答案