【題目】利用獨立性檢驗的方法調(diào)查高中生性別與愛好某項運動是否有關,通過隨機調(diào)查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認為“愛好該項運動與性別無關”
B. 有99%以上的把握認為“愛好該項運動與性別有關”
C. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別有關”
D. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別無關”
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在長方形中,為的中點,為線段上一動點.現(xiàn)將沿折起,形成四棱錐.
(1)若與重合,且(如圖2).證明:平面;
(2)若不與重合,且平面平面 (如圖3),設,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】質(zhì)量監(jiān)督局檢測某種產(chǎn)品的三個質(zhì)量指標,用綜合指標核定該產(chǎn)品的等級.若,則核定該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標列表如下:
(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機抽取2件產(chǎn)品,設事件為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標均滿足”,求事件的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為實數(shù),函數(shù).
(1)當時,求在區(qū)間上的最大值;
(2)設函數(shù)為在區(qū)間上的最大值,求的解析式;
(3)求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,,點為曲線上任意一點且滿足.
(1)求曲線的方程;
(2)設曲線與軸交于、兩點,點是曲線上異于、的任意一點,直線、分別交直線于點、.求證:以為直線的圓與軸交于定點,并求出點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,,點為曲線上任意一點且滿足.
(1)求曲線的方程;
(2)設曲線與軸交于、兩點,點是曲線上異于、的任意一點,直線、分別交直線于點、.試問在軸上是否存在一個定點,使得?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點,點是圓上任意一點,線段的中垂線與交于點.
(Ⅰ)求點的軌跡的方程.
(Ⅱ)斜率不為0的動直線過點且與軌跡交于,兩點,為坐標原點.是否存在常數(shù),使得為定值?若存在,求出這個定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一微商店對某種產(chǎn)品每天的銷售量(件)進行為期一個月的數(shù)據(jù)統(tǒng)計分析,并得出了該月銷售量的直方圖(一個月按30天計算)如圖所示.假設用直方圖中所得的頻率來估計相應事件發(fā)生的概率.
(1)求頻率分布直方圖中的值;
(2)求日銷量的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)若微商在一天的銷售量超過25件(包括25件),則上級商企會給微商贈送100元的禮金,估計該微商在一年內(nèi)獲得的禮金數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一幾何體的平面展開圖如圖所示,其中四邊形為正方形,、分別為、的中點,在此幾何體中,給出的下面結(jié)論中正確的有( )
A. 直線與直線異面 B. 直線與直線異面
C. 直線平面 D. 直線平面
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com