已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.
(Ⅰ)橢圓的標準方程為
(Ⅱ)直線l過定點,定點坐標為

試題分析:(Ⅰ)因為橢圓C上的點到焦點距離的最大值為,最小值為.在橢圓中,可求,再根據(jù)橢圓的標準方程為求得.
(Ⅱ)聯(lián)立直線l與橢圓方程得的一元二次方程,因為以AB為直徑的圓過橢圓的右頂點D(2,0),所以,故,可得的關(guān)系式,再由點斜式的直線方程寫出直線l過定點,注意檢驗.
試題解析:(Ⅰ)由題意設(shè)橢圓的標準方程為
由已知得:

(Ⅱ)設(shè),聯(lián)立
,則

,
因為以AB為直徑的圓過橢圓的右頂點D(2,0),

,直線過定點(2,0),與已知矛盾;

所以,直線l過定點,定點坐標為
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中,點A、B的坐標分別為,點C在x軸上方。
(1)若點C坐標為,求以A、B為焦點且經(jīng)過點C的橢圓的方程;
(2)過點P(m,0)作傾角為的直線交(1)中曲線于M、N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數(shù)m的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓,若焦點在軸上的橢圓 過點,且其長軸長等于圓的直徑.
(1)求橢圓的方程;
(2)過點作兩條互相垂直的直線與圓交于、兩點,交橢圓于另一點,設(shè)直線的斜率為,求弦長;
(3)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓,若橢圓的右頂點為圓的圓心,離心率為.
(1)求橢圓的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點,與圓分別交于兩點,點在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,點為動點,、分別為橢圓的左、右焦點.已知為等腰三角形.

(1)求橢圓的離心率
(2)設(shè)直線與橢圓相交于、兩點,是直線上的點,滿足,求點的軌跡
方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)為雙曲線的左焦點,在軸上點的右側(cè)有一點,以為直徑的圓與雙曲線左、右兩支在軸上方的交點分別為,則的值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

中,,.若以為焦點的橢圓經(jīng)過點,則該橢圓的離心率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為兩個不相等的非零實數(shù),則方程所表示的曲線可能是(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

F1,F(xiàn)2是雙曲線的左、右焦點,過左焦點F1的直線與雙曲線C的左、右兩支分別交于A,B兩點,若,則雙曲線的離心率是(   )
A.B.C.2D.

查看答案和解析>>

同步練習冊答案