已知中,點A、B的坐標分別為,點C在x軸上方。
(1)若點C坐標為,求以A、B為焦點且經過點C的橢圓的方程;
(2)過點P(m,0)作傾角為的直線交(1)中曲線于M、N兩點,若點Q(1,0)恰在以線段MN為直徑的圓上,求實數(shù)m的值。
(1)橢圓方程;(2)
   
試題分析:(1)由已知可知橢圓焦點在軸上且,設橢圓的標準方程,在利用橢圓的定義求,根據可求;
(2)直線的傾斜角為可知斜率為,設點斜式的直線方程,因為點在以線段為直徑的圓上,所以,即,聯(lián)立直線與橢圓方程,利用韋達定理建立關于的等式,可求得的值.
試題解析:(1)設橢圓方程為,c=,2a=,b=,橢圓方程為 .
(2)直線l的方程為,聯(lián)立方程解得
,若Q恰在 以MN為直徑的圓上,
,即
 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知線段MN的兩個端點M、N分別在軸、軸上滑動,且,點P在線段MN上,滿足,記點P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與的值的關系;
(2)當時,設A、B是曲線W與軸、軸的正半軸的交點,過原點的直線與曲線W交于C、D兩點,其中C在第一象限,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為,記直線CA、CB的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓 的離心率為,點,0),(0,)原點到直線的距離為。

(1) 求橢圓的方程;
(2) 設點為(,0),點在橢圓上(與、均不重合),點在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓的方程為,雙曲線的兩條漸近線為、.過橢圓的右焦點作直線,使,又交于點,設與橢圓的兩個交點由上至下依次為、.

(1)若的夾角為,且雙曲線的焦距為,求橢圓的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1:3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.

(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知的頂點在橢圓上,在直線上,且
(1)當邊通過坐標原點時,求的長及的面積;
(2)當,且斜邊的長最大時,求所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過拋物線焦點的弦,過兩點分別作其準線的垂線,垂足分別為,傾斜角為,若,則
.②,
, ④ ⑤
其中結論正確的序號為                

查看答案和解析>>

同步練習冊答案