【題目】已知等比數列{an}滿足:a1= ,a1 , a2 , a3﹣ 成等差數列,公比q∈(0,1)
(1)求數列{an}的通項公式;
(2)設bn=2nan , 求數列{bn}的前n項和Sn .
【答案】
(1)解:設等比數列{an}公比為q,
∵ , 成等差數列,
∴ ,即 ,
整理得4q2﹣8q+3=0,
解得 或 .
又∵q∈(0,1),
∴ ,
∴
(2)解:根據題意得bn=2nan= , ,①
,②
②﹣①得:
=
=
=
【解析】(1)利用a1 , a2 , a3﹣ 成等差數列.建立等量關系式,求出通項公式.;(2)寫出數列{bn}的通項公式,然后寫出前n項和的表達式通過錯位相減法求解即可.
【考點精析】本題主要考查了數列的前n項和和數列的通項公式的相關知識點,需要掌握數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取50名學生,將他們的期中考試數學成績(滿分100分,成績均為不低于40分的整數)分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.
(1)若該校高一年級共有學生1000人,試估計成績不低于60分的人數;
(2)為了幫助學生提高數學成績,學校決定在隨機抽取的50名學生中成立“二幫一”小組,即從成績[90,100]中選兩位同學,共同幫助[40,50)中的某一位同學.已知甲同學的成績?yōu)?2分,乙同學的成績?yōu)?5分,求甲、乙恰好被安排在同一小組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數。
(1)若f(x)的圖象與g(x)的圖象所在兩條曲線的一個公共點在y軸上,且在該點處兩條曲線的切線互相垂直,求b和c的值。
(2)若a=c=1,b=0,試比較f(x)與g(x)的大小,并說明理由;
(3)若b=c=0,證明:對任意給定的正數a,總存在正數m,使得當x時,
恒有f(x)>g(x)成立。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】秦九韶算法是中國南宋時期的數學家秦九韶提出的一種多項式簡化算法,對于求一個n次多項式函數fn(x)=anxn+an﹣1xn﹣1+…+a1x+a0的具體函數值,運用常規(guī)方法計算出結果最多需要n次加法和 乘法,而運用秦九韶算法由內而外逐層計算一次多項式的值的算法至多需要n次加法和n次乘法.對于計算機來說,做一次乘法運算所用的時間比做一次加法運算要長得多,所以此算法極大地縮短了CPU運算時間,因此即使在今天該算法仍具有重要意義.運用秦九韶算法計算f(x)=0.5x6+4x5﹣x4+3x3﹣5x當x=3時的值時,最先計算的是( )
A.﹣5×3=﹣15
B.0.5×3+4=5.5
C.3×33﹣5×3=66
D.0.5×36+4×35=1336.6
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知☉O1與☉O2相交于A,B兩點,過點A作☉O1的切線交☉O2于點C,過點B作兩圓的割線,分別交☉O1、☉O2于點D、E,DE與AC相交于點P.若AD是☉O2的切線,且PA=6,PC=2,BD=9,則AB的長為____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)當時,求函數的極小值;
(Ⅱ)設定義在上的函數在點處的切線方程為:,當時,若在內恒成立,則稱為函數的“轉點”.當時,試問函數是否存在“轉點”?若存在,求出轉點的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出50個數,1,2,4,7,11,…,其規(guī)律是:第1個數是1,第2個數比第1個數大1,第3個數比第2個數大2,第4個數比第3個數大3,…,以此類推.要求計算這50個數的和.將右邊給出的程序框圖補充完整,
(1)___________________ (2)_______________________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知長為2的線段AB中點為C,當線段AB的兩個端點A和B分別在x軸和y軸上運動時,C點的軌跡為曲線C1;
(1)求曲線C1的方程;
(2)直線 ax+by=1與曲線C1相交于C、D兩點(a,b是實數),且△COD是直角三角形(O是坐標原點),求點P(a,b)與點(0,1)之間距離的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com