【題目】已知函數(shù) 且.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求證:;
(3)討論函數(shù)的極值.
【答案】(Ⅰ);(Ⅱ)詳見解析;(Ⅲ)詳見解析.
【解析】
(I)求得切點(diǎn)坐標(biāo)和斜率,由此求得切線方程.(II)將原不等式轉(zhuǎn)化為成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最大值為零,由此證得不等式成立.(III)對(duì)求導(dǎo)后,對(duì)分成兩類,結(jié)合函數(shù)的單調(diào)區(qū)間,討論得出函數(shù)的極值.
解:(Ⅰ)當(dāng)時(shí),.所以.
因?yàn)?/span>,
所以曲線在處的切線方程為.
(Ⅱ)當(dāng)時(shí),.
函數(shù)的定義域?yàn)?/span>.
不等式成立 成立 成立.
設(shè) ,
則.
當(dāng)變化時(shí),,變化情況如下表:
+ | - | ||
↗ | 極大值 | ↘ |
所以.
因?yàn)?/span>,所以,
所以.
(Ⅲ)求導(dǎo)得. 令,因?yàn)?/span>可得.
當(dāng)時(shí),的定義域?yàn)?/span>.當(dāng)變化時(shí),,變化情況如下表:
+ | - | ||
↗ | 極大值 | ↘ |
此時(shí)有極大值,無極小值.
當(dāng)時(shí),的定義域?yàn)?/span>,當(dāng)變化時(shí),,變化情況如下表:
- | + | ||
↘ | 極小值 | ↗ |
此時(shí)有極小值,無極大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,AB=3,BC=4,E,F(xiàn)分別在線段BC,AD上,EF∥AB,將矩形ABEF沿EF折起,記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.
(1)在線段BC是否存在一點(diǎn)E,使得ND⊥FC ,若存在,求出EC的長(zhǎng)并證明;
若不存在,請(qǐng)說明理由.
(2)求四面體NEFD體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,,是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,鏈接M,N兩地之間的鐵路是圓心在上的一段圓弧,若點(diǎn)M在O正北方向,且,點(diǎn)N到,距離分別為4km和5km.
建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路線所在圓弧的方程;
若該城市的某中學(xué)擬在O點(diǎn)正東方向選址建分校,考慮環(huán)境問題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距離點(diǎn)O的最近距離.注:校址視為一個(gè)點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以橢圓長(zhǎng)、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動(dòng)點(diǎn)在定直線上運(yùn)動(dòng)時(shí),直線分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖231所示.
圖231
將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另1天的日銷售量低于50個(gè)的概率;
(2)用X表示在未來3天里日銷售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望E(X)及方差D(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部門在同一上班高峰時(shí)段對(duì)甲、乙兩地鐵站各隨機(jī)抽取了50名乘客,統(tǒng)計(jì)其乘車等待時(shí)間(指乘客從進(jìn)站口到乘上車的時(shí)間,乘車等待時(shí)間不超過40分鐘).將統(tǒng)計(jì)數(shù)據(jù)按分組,制成頻率分布直方圖:
假設(shè)乘客乘車等待時(shí)間相互獨(dú)立.
(1)在上班高峰時(shí)段,從甲站的乘客中隨機(jī)抽取1人,記為;從乙站的乘客中隨機(jī)抽取1人,記為.用頻率估計(jì)概率,求“乘客,乘車等待時(shí)間都小于20分鐘”的概率;
(2)從上班高峰時(shí)段,從乙站乘車的乘客中隨機(jī)抽取3人,表示乘車等待時(shí)間小于20分鐘的人數(shù),用頻率估計(jì)概率,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).
(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);
(Ⅱ)求證:直線與橢圓相切;
(Ⅲ)判斷是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運(yùn)營(yíng)公司為了解某地區(qū)用戶對(duì)該公司所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了200名用戶,得到用戶的滿意度評(píng)分,現(xiàn)將評(píng)分分為5組,如下表:
組別 | 一 | 二 | 三 | 四 | 五 |
滿意度評(píng)分 | |||||
頻數(shù) | 12 | 28 | 68 | 40 | |
頻率 | 0.06 | 0.34 | 0.2 |
(1)求表格中的,,的值;
(2)估計(jì)用戶的滿意度評(píng)分的平均數(shù);
(3)若從這200名用戶中隨機(jī)抽取50人,估計(jì)滿意度評(píng)分高于6分的人數(shù)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】艾滋病是一種危害性極大的傳染病,由感染艾滋病病毒病毒引起,它把人體免疫系統(tǒng)中最重要的CD4T淋巴細(xì)胞作為主要攻擊目標(biāo),使人體喪失免疫功能下表是近八年來我國(guó)艾滋病病毒感染人數(shù)統(tǒng)計(jì)表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
感染者人數(shù)單位:萬人 | 85 |
請(qǐng)根據(jù)該統(tǒng)計(jì)表,畫出這八年我國(guó)艾滋病病毒感染人數(shù)的折線圖;
請(qǐng)用相關(guān)系數(shù)說明:能用線性回歸模型擬合y與x的關(guān)系;
建立y關(guān)于x的回歸方程系數(shù)精確到,預(yù)測(cè)2019年我國(guó)艾滋病病毒感染人數(shù).
參考數(shù)據(jù):;,,,
參考公式:相關(guān)系數(shù),
回歸方程中, ,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com