【題目】某部門在同一上班高峰時(shí)段對(duì)甲、乙兩地鐵站各隨機(jī)抽取了50名乘客,統(tǒng)計(jì)其乘車等待時(shí)間(指乘客從進(jìn)站口到乘上車的時(shí)間,乘車等待時(shí)間不超過(guò)40分鐘).將統(tǒng)計(jì)數(shù)據(jù)按分組,制成頻率分布直方圖:
假設(shè)乘客乘車等待時(shí)間相互獨(dú)立.
(1)在上班高峰時(shí)段,從甲站的乘客中隨機(jī)抽取1人,記為;從乙站的乘客中隨機(jī)抽取1人,記為.用頻率估計(jì)概率,求“乘客,乘車等待時(shí)間都小于20分鐘”的概率;
(2)從上班高峰時(shí)段,從乙站乘車的乘客中隨機(jī)抽取3人,表示乘車等待時(shí)間小于20分鐘的人數(shù),用頻率估計(jì)概率,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ)詳見(jiàn)解析.
【解析】
(I)根據(jù)頻率分布直方圖分別計(jì)算出兩個(gè)乘客等待時(shí)間小于分鐘的頻率,按照相互獨(dú)立事件概率計(jì)算公式,計(jì)算出“乘客,乘車等待時(shí)間都小于20分鐘”的概率.(II)根據(jù)二項(xiàng)分布概率計(jì)算公式以及數(shù)學(xué)期望計(jì)算公式,求得的分布列和數(shù)學(xué)期望.
解:(Ⅰ)設(shè)表示事件“乘客乘車等待時(shí)間小于20分鐘”,表示事件“乘客乘車等待時(shí)間小于20分鐘”,表示事件“乘客乘車等待時(shí)間都小于20分鐘”.
由題意知,乘客乘車等待時(shí)間小于20分鐘的頻率為
,故的估計(jì)值為.
乘客乘車等待時(shí)間小于20分鐘的頻率為
,故的估計(jì)值為.
又.
故事件的概率為.
(Ⅱ)由(Ⅰ)可知,乙站乘客乘車等待時(shí)間小于20分鐘的頻率為,
所以乙站乘客乘車等待時(shí)間小于20分鐘的概率為.
顯然,的可能取值為且.
所以;;
;.
故隨機(jī)變量的分布列為
0 | ||||
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣共有戶籍人口60萬(wàn),經(jīng)統(tǒng)計(jì),該縣60歲及以上、百歲以下的人口占比,百歲及以上老人15人.現(xiàn)從該縣60歲及以上、百歲以下的老人中隨機(jī)抽取230人,得到如下頻數(shù)分布表:
年齡段(歲) | ||||
人數(shù)(人) | 125 | 75 | 25 | 5 |
(1)從樣本中70歲及以上老人中,采用分層抽樣的方法抽取21人,進(jìn)一步了解他們的生活狀況,則80歲及以上老人應(yīng)抽多少人?
(2)從(1)中所抽取的80歲及以上老人中,再隨機(jī)抽取2人,求抽到90歲及以上老人的概率;
(3)該縣按省委辦公廳、省人民政府辦公廳《關(guān)于加強(qiáng)新時(shí)期老年人優(yōu)待服務(wù)工作的意見(jiàn)》精神,制定如下老年人生活補(bǔ)貼措施,由省、市、縣三級(jí)財(cái)政分級(jí)撥款:
①本縣戶籍60歲及以上居民,按城鄉(xiāng)居民養(yǎng)老保險(xiǎn)實(shí)施辦法每月領(lǐng)取55元基本養(yǎng)老金;
②本縣戶籍80歲及以上老年人額外享受高齡老人生活補(bǔ)貼;
(a)百歲及以上老年人,每人每月發(fā)放345元的生活補(bǔ)貼;
(b)90歲及以上、百歲以下老年人,每人每月發(fā)放200元的生活補(bǔ)貼;
(c)80歲及以上、90歲以下老年人,每人每月發(fā)放100元的生活補(bǔ)貼.
試估計(jì)政府執(zhí)行此項(xiàng)補(bǔ)貼措施的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合,,分別從集合和中隨機(jī)取一個(gè)元素與.記“點(diǎn)落在直線上”為事件,若事件的概率最大,則的取值可能是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有關(guān)命題的說(shuō)法錯(cuò)誤的是( )
A.若p∨q為假命題,則p、q均為假命題
B.“x=1”是“x2﹣3x+2=0”的充分不必要條件
C.命題“若x2﹣3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2﹣3x+2≠0”
D.對(duì)于命題p:x≥0,2x=3,則¬P:x<0,2x≠3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 且.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求證:;
(3)討論函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,,.
(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點(diǎn),使得直線平面若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:,長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的差為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若在軸上存在點(diǎn),過(guò)點(diǎn)的直線分別與橢圓相交于、兩點(diǎn),且為定值,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線x2=4y.
(1)求拋物線在點(diǎn)P(2,1)處的切線方程;
(2)若不過(guò)原點(diǎn)的直線l與拋物線交于A,B兩點(diǎn)(如圖所示),且OA⊥OB,|OA|=|OB|,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司租用一個(gè)門店作展館,準(zhǔn)備對(duì)其公司生產(chǎn)的某型產(chǎn)品進(jìn)行為期一年的展出。為此,需對(duì)門店進(jìn)行裝修,展出結(jié)束,門店不再使用,現(xiàn)市面上有某品牌的型和型兩種節(jié)能燈,假定型節(jié)能燈使用壽命都超過(guò)小時(shí),經(jīng)銷商對(duì)型節(jié)能燈使用壽命進(jìn)行了調(diào)查統(tǒng)計(jì),得到如下頻率分布直方圖:
門店裝修時(shí),需安裝該品牌節(jié)能燈支(同種型號(hào)).經(jīng)了解,型瓦和B型瓦的兩種節(jié)能燈照明效果相當(dāng),都適合安裝。已知型和型節(jié)能燈每支的價(jià)格分別為元、元,當(dāng)?shù)厣虡I(yè)電價(jià)為元/千瓦時(shí)。假定該店面一年周轉(zhuǎn)期的照明時(shí)間為小時(shí),若正常營(yíng)業(yè)期間燈壞了立即購(gòu)買同型燈管更換。(用頻率估計(jì)概率)
(1)根據(jù)頻率直方圖估算B型節(jié)能燈的平均使用壽命;
(2)根據(jù)統(tǒng)計(jì)知識(shí),若一支燈管一年內(nèi)需要更換的概率為,那么支燈管一年內(nèi)估計(jì)需要更換支.若該商家新店面全部安裝型節(jié)能燈,試估計(jì)一年內(nèi)需更換的支數(shù);
(3)若只考慮燈的成本和消耗電費(fèi),你認(rèn)為該商家應(yīng)選擇哪種型號(hào)的節(jié)能燈,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com