【題目】在中,角A,B,C所對的邊分別是a,b,c,且.
(1)證明:;
(2)若,求.
【答案】(1)證明見解析;(2)4.
【解析】(1)根據(jù)正弦定理,可設===k(k>0).
則a=ksin A,b=ksin B,c=ksin C.
代入+=中,有+=,
變形可得sin Asin B=sin Acos B+cos Asin B=sin(A+B).
在中,由A+B+C=π,得sin(A+B)=sin(π–C)=sin C,
所以sin Asin B=sin C.
(2)由已知,b2+c2–a2=bc,根據(jù)余弦定理,有
cos A==.
所以sin A==.
由(1),sin Asin B=sin Acos B+cos Asin B,
所以sin B=cos B+sin B,
故tan B==4.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ax2﹣(2a+1)x+2lnx(a∈R)
(1)當a= 時,求函數(shù)f(x)的單調區(qū)間;
(2)設g(x)=(x2﹣2x)ex , 如果對任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)對一切實數(shù)x,y都有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)若g(x)=kx﹣2k+5,對任意的m∈[1,4],總存在n∈[1,4],使得f(m)=g(n)成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10cm,容器Ⅱ的兩底面對角線,的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)
(1)將放在容器Ⅰ中,的一端置于點A處,另一端置于側棱上,求沒入水中部分的長度;
(2)將放在容器Ⅱ中,的一端置于點E處,另一端置于側棱上,求沒入水中部分的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C: (a>0,b>0)過點A(1,0),且離心率為
(1)求雙曲線C的方程;
(2)已知直線x﹣y+m=0與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,O為等腰三角形ABC內一點,⊙O與△ABC的底邊BC交于M,N兩點,與底邊上的高AD交于點G,且與AB,AC分別相切于E,F(xiàn)兩點.
(1)證明:EF∥BC;
(2)若AG等于⊙O的半徑,且AE=MN=2 ,求四邊形EBCF的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com