【題目】平面直角坐標系中,圓的圓心為.已知點,且為圓上的動點,線段的中垂線交于點.

(Ⅰ)求點的軌跡方程;

(Ⅱ)設點的軌跡為曲線,拋物線 的焦點為., 是過點互相垂直的兩條直線,直線與曲線交于 兩點,直線與曲線交于, 兩點,求四邊形面積的取值范圍.

【答案】(1);(2)四邊形面積的取值范圍是.

【解析】試題分析;(1)根據(jù)中垂線的幾何性質(zhì)得到 ,由橢圓的定義的到軌跡方程為;(2,聯(lián)立直線和橢圓得到二次方程,由弦長公式分別求得ACBD,進而求得面積表達式,再由換元法得到最值.

解析:

(Ⅰ)∵為線段中垂線上一點,

, ,∵,

的軌跡是以, 為焦點,長軸長為的橢圓,

它的方程為.

(Ⅱ)∵的焦點為

的方程為,

當直線斜率不存在時, 只有一個交點,不合題意.

當直線斜率為時,可求得, ,

.

當直線斜率存在且不為時,

方程可設為,代入

, ,

, ,則,

.

直線的方程為可聯(lián)立得,

, ,則,

∴四邊形的面積

.

,則,

是增函數(shù),

綜上,四邊形面積的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=emx+x2-mx.

(1)證明:f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;

(2)若對于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個零點.

(1)求實數(shù)的取值范圍;

(2)設, )是的兩個零點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中,底面為矩形, .側(cè)面底面.

(1)證明: ;

(2)設與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

1若方程上有實數(shù)根求實數(shù)的取值范圍;

2上的最小值為求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, .

討論的單調(diào)性;

,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列滿足: ,

()判斷的大小關(guān)系,并證明你的結(jié)論;

()求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為, , 為橢圓的上頂點, 為等邊三角形,且其面積為, 為橢圓的右頂點.

Ⅰ)求橢圓的方程;

Ⅱ)若直線與橢圓相交于兩點(不是左、右頂點),且滿足,試問:直線是否過定點?若過定點,求出該定點的坐標,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018海南高三階段性測試(二模)如圖,在直三棱柱中, , ,點的中點,點上一動點.

I)是否存在一點,使得線段平面?若存在,指出點的位置,若不存在,請說明理由.

II)若點的中點且,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案