【題目】已知函數(shù)f(x)=ax+ln x,其中a為常數(shù).
(1)當a=-1時,求f(x)的單調(diào)遞增區(qū)間.
(2)當0<-<e時,若f(x)在區(qū)間(0,e)上的最大值為-3,求a的值.
(3)當a=-1時,試推斷方程|f(x)|=是否有實數(shù)根.
【答案】(1)(0,1).(2) .(3)方程沒有實數(shù)根.
【解析】試題分析:(1)先求函數(shù)導數(shù),再求導函數(shù)零點,列表分析可得導函數(shù)符號,即得f(x)的單調(diào)遞增區(qū)間.(2)先求函數(shù)導數(shù),再求導函數(shù)零點,列表分析可得導函數(shù)符號,即得f(x)的單調(diào)性,最后根據(jù)單調(diào)性確定函數(shù)最大值,由最大值為-3解方程可得a的值.(3)先根據(jù)(1)得|f(x)|最小值為1,再利用導數(shù)研究單調(diào)性并確定最大值,且小于1,因此兩函數(shù)無交點
試題解析:(1)由已知可知函數(shù)f(x)的定義域為{x|x>0},
當a=-1時,f(x)=-x+ln x(x>0),f′(x)=(x>0);
當0<x<1時,f′(x)>0;當x>1時,f′(x)<0.
所以f(x)的單調(diào)遞增區(qū)間為(0,1).
(2)因為f′(x)=a+(x>0),令f′(x)=0,解得x=-;
由f′(x)>0,解得0<x<-;由f′(x)<0,解得-<x<e.
從而f(x)的單調(diào)遞增區(qū)間為,遞減區(qū)間為,
所以,f(x)max=f=-1+ln=-3.
解得a=-e2.
(3)由(1)知當a=-1時,f(x)max=f(1)=-1,
所以|f(x)|≥1.
令g(x)=+,則g′(x)=.
當0<x<e時,g′(x)>0;
當x>e時,g′(x)<0.
從而g(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減.
所以g(x)max=g(e)=+<1,
所以,|f(x)|>g(x),即|f(x)|>+,
所以,方程|f(x)|=+沒有實數(shù)根.
科目:高中數(shù)學 來源: 題型:
【題目】一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸,硝酸鹽18噸;生產(chǎn)1車皮乙種肥料需要的主要原料是磷酸鹽1噸,硝酸鹽15噸.現(xiàn)庫存磷酸鹽10噸,硝酸鹽66噸,在此基礎上生產(chǎn)這兩種混合肥料.如果生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤為12 000元,生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤為7 000元,那么可產(chǎn)生的最大利潤是( )
A. 29 000元 B. 31 000元 C. 38 000元 D. 45 000元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程為 (為參數(shù)),曲線的極坐標方程是.
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)設直線與曲線相交于兩點,點為的中點,點的極坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1 ,在△ABC中,AB=BC=2, ∠B=90°,D為BC邊上一點,以邊AC為對角線做平行四邊形ADCE,沿AC將△ACE折起,使得平面ACE ⊥平面ABC,如圖2.
(1)在圖 2中,設M為AC的中點,求證:BM丄AE;
(2)在圖2中,當DE最小時,求二面角A -DE-C的平面角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)若曲線存在斜率為-1的切線,求實數(shù)a的取值范圍;
(II)求的單調(diào)區(qū)間;
(III)設函數(shù),求證:當時, 在上存在極小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】園林管理處擬在公園某區(qū)域規(guī)劃建設一半徑為米圓心角為(弧度)的扇形景觀水池,其中為扇形的圓心,同時緊貼水池周邊建一圈理想的無寬度步道,要求總預算費用不超過萬元,水池造價為每平方米元,步道造價為每米元.
(1)當和分別為多少時,可使廣場面積最大,并求出最大值;
(2)若要求步道長為米,則可設計出水池最大面積是多少.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(-2,0),B(2,0),曲線C上的動點P滿足.
(1)求曲線C的方程;
(2)若過定點M(0,-2)的直線l與曲線C有公共點,求直線l的斜率k的取值范圍;
(3)若動點Q(x,y)在曲線C上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,A、B、C的對邊分別為a,b,c,已知向量,n=(c,b-2a),且m·n=0.
(1)求角C的大。
(2)若點D為邊AB上一點,且滿足, , ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,x軸正半軸為極軸建立極坐標系.已知圓C的極坐標方程為ρ=2sin θ,直線l的參數(shù)方程為 (t為參數(shù)),若l與C交于A,B兩點.
(Ⅰ)求|AB|;
(Ⅱ)設P(1,2),求|PA|·|PB|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com