【題目】已知點(diǎn)A(-2,0),B(2,0),曲線(xiàn)C上的動(dòng)點(diǎn)P滿(mǎn)足.
(1)求曲線(xiàn)C的方程;
(2)若過(guò)定點(diǎn)M(0,-2)的直線(xiàn)l與曲線(xiàn)C有公共點(diǎn),求直線(xiàn)l的斜率k的取值范圍;
(3)若動(dòng)點(diǎn)Q(x,y)在曲線(xiàn)C上,求的取值范圍.
【答案】(1);(2);(3)
【解析】試題分析:(1)設(shè)點(diǎn),利用直接法求動(dòng)點(diǎn)軌跡;(2)設(shè)直線(xiàn)方程,利用圓心到直線(xiàn)的距離和半徑的大小進(jìn)行求解;(3)將求斜率問(wèn)題轉(zhuǎn)化為判定直線(xiàn)和圓有公共點(diǎn)問(wèn)題,再利用圓心到直線(xiàn)的距離和半徑的大小進(jìn)行求解.
試題解析:(1)設(shè)P(x,y),A·B=(x+2,y)(x-2,y)=x2-4+y2=-3,
得P點(diǎn)軌跡(曲線(xiàn)C)方程為x2+y2=1,
即曲線(xiàn)C是圓.
(2)可設(shè)直線(xiàn)l的方程為y=kx-2,
其一般方程為kx-y-2=0,
由直線(xiàn)l與曲線(xiàn)C有交點(diǎn),得≤1,得k≤-或k≥,
即所求k的取值范圍是(-∞,- ]∪[,+∞).
(3)由動(dòng)點(diǎn)Q(x,y),設(shè)定點(diǎn)N(1,-2),
則直線(xiàn)QN的斜率kQN==u,
又點(diǎn)Q在曲線(xiàn)C上,故直線(xiàn)QN與圓有交點(diǎn),
設(shè)直線(xiàn)QN的方程為y+2=u(x-1),
即ux-y-u-2=0.
當(dāng)直線(xiàn)與圓相切時(shí),=1,
解得u=-,
當(dāng)u不存在時(shí),直線(xiàn)與圓相切,
所以u∈(-∞,-].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國(guó)家科研部門(mén)的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為:y=x2-200x+80000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.
該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家至少需要補(bǔ)貼多少元才能使該單位不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類(lèi)的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“, 兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“作品獲得一等獎(jiǎng)”.
若這四位同學(xué)只有兩位說(shuō)的話(huà)是對(duì)的,則獲得一等獎(jiǎng)的作品是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax+ln x,其中a為常數(shù).
(1)當(dāng)a=-1時(shí),求f(x)的單調(diào)遞增區(qū)間.
(2)當(dāng)0<-<e時(shí),若f(x)在區(qū)間(0,e)上的最大值為-3,求a的值.
(3)當(dāng)a=-1時(shí),試推斷方程|f(x)|=是否有實(shí)數(shù)根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù), .
(1)求證: ;
(2)若存在,使,求的取值范圍;
(3)若對(duì)任意的恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+b圖象上的點(diǎn)P(2,1)關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)點(diǎn)Q在函數(shù)g(x)=lnx+a上.
(Ⅰ)求函數(shù)h(x)=g(x)-f(x)的最大值;
(Ⅱ)對(duì)任意x1∈[1,e],x2∈,是否存在實(shí)數(shù)k,使得不等式成立,若存在,請(qǐng)求出實(shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016·廣州模擬)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分別是線(xiàn)段BC,B1C1的中點(diǎn),過(guò)線(xiàn)段AD的中點(diǎn)P作BC的平行線(xiàn),分別交AB,AC于點(diǎn)M,N.
(1)證明:MN⊥平面ADD1A1;
(2)求二面角A-A1M-N的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的偶函數(shù)y=f(x)滿(mǎn)足:f(x+4)=f(x)+f(2),且當(dāng)x∈[0,2]時(shí),y=f(x)單調(diào)遞減,給出以下四個(gè)命題:
①f(2)=0;②直線(xiàn)x=-4為函數(shù)y=f(x)圖象的一條對(duì)稱(chēng)軸;③函數(shù)y=f(x)在[8,10]上單調(diào)遞增;④若關(guān)于x的方程f(x)=m在[-6,-2]上的兩根分別為x1,x2,則x1+x2=-8.
其中所有正確命題的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在統(tǒng)計(jì)學(xué)中,偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某科考試成績(jī)與該科班平均分的差叫某科偏差,班主任為了了解個(gè)別學(xué)生的偏科情況,對(duì)學(xué)生數(shù)學(xué)偏差x(單位:分)與物理偏差y(單位:分)之間的關(guān)系進(jìn)行學(xué)科偏差分析,決定從全班56位同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析,得到他們的兩科成績(jī)偏差數(shù)據(jù)如下:
學(xué)生序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)偏差x | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差y | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(1)已知x與y之間具有線(xiàn)性相關(guān)關(guān)系,求y關(guān)于x的線(xiàn)性回歸方程;
(2)若這次考試該班數(shù)學(xué)平均分為118分,物理平均分為90.5,試預(yù)測(cè)數(shù)學(xué)成績(jī)126分的同學(xué)的物理成績(jī).
參考公式: .
參考數(shù)據(jù): .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com