【題目】αβ是空間中的兩個平面,l,m是兩條直線,則使得αβ成立的一個充分條件是(

A.lαmβ,lmB.lm,lαmβ

C.lα,mα,lβmβD.lm,lα,mβ

【答案】D

【解析】

對于A,不一定得到αβ,αβ也可能相交;對于B,不一定得到αβ,αβ也可能相交;對于C,只有添加條件lm相交時,才有αβ;對于D,可得αβ,即得解.

解:對于A,由lα,mβ,lm,不一定得到αβ,αβ也可能相交;

對于B,由lmlα,mβ,不一定得到αβ,αβ也可能相交,

如圖,

對于C,lαmα,lβ,mβ,不一定得到αβ,只有添加條件lm相交時,才有αβ;

對于D,由lm,lα,所以mα,又mβ,可得αβ.

∴使得αβ成立的一個充分條件是D.

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,,點,分別為棱的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐中,,△為等邊三角形,二面角的余弦值為,當三棱錐的體積最大時,其外接球的表面積為.則三棱錐體積的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,點E是棱的中點,點F是線段上的一個動點.有以下三個命題:

①異面直線所成的角是定值;

②三棱錐的體積是定值;

③直線與平面所成的角是定值.

其中真命題的個數(shù)是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,E,F分別為的中點,是由繞直線旋轉得到,連結,.

1)證明:平面

2)若與平面所成的角為60°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABCA1B1C1中,AA1⊥平面ABC,∠BAC90°,ABBC2D,E分別為AA1,B1C的中點.

1)證明:DE⊥平面BCC1B1;

2)若直線BE與平面AA1B1B所成角為30°,求二面角CBDE的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,MBC的中點,將△AMB沿直線AM翻折成△AB1M,連接B1DNB1D的中點,則在翻折過程中,下列說法正確的是(

A.存在某個位置,使得CNAB1

B.CN的長是定值

C.AB=BM,則AMB1D

D.AB=BM=1,當三棱錐B1AMD的體積最大時,三棱錐B1AMD的外接球的表面積是4π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一世又叫一代”.東漢·王充《論衡·宜漢篇》:且孔子所謂一世,三十年也,清代·段玉裁《說文解字注》:三十年為一世,按父子相繼曰世”.而當代中國學者測算一代平均為25.另根據(jù)國際一家研究機構的研究報告顯示,全球家族企業(yè)的平均壽命其實只有26年,約占總量的的家族企業(yè)只能傳到第二代,約占總量的的家族企業(yè)只能傳到第三代,約占總量的家族企業(yè)可以傳到第四代甚至更久遠(為了研究方便,超過四代的可忽略不計).根據(jù)該研究機構的研究報告,可以估計該機構所認為的一代大約為(

A.23B.22C.21D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中盈不足章中有這樣一則故事:今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.為了計算每天良馬和駑馬所走的路程之和,設計框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案