【題目】已知橢圓的左,右焦點分別,過的直線l交橢圓于A,B兩點,若的最大值為5,則b的值為( )
A. 1 B. C. D.
【答案】C
【解析】
由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當AB垂直于x軸時|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值.
由0<b<2可知,焦點在x軸上,∴a=2,
∵過F1的直線l交橢圓于A,B兩點,∴|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8
∴|BF2|+|AF2|=8﹣|AB|.
當AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,
此時|AB|=b2,∴5=8﹣b2,
解得.
故選.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程是(為參數(shù))以原點為極點, 軸正半軸為極軸,并取與直角坐標系相同的單位長度,建立極坐標系,曲線的極坐標方程是.
(1)求曲線, 的直角坐標方程;
(2)若、分別是曲線和上的任意點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某住宅小區(qū)為了使居民有一個優(yōu)雅舒適的生活環(huán)境,計劃建一個八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個相同的矩形ABCD和EFGH構(gòu)成的面積為200平方米的十字型地域.現(xiàn)計劃在正方形MNPQ上建花壇,造價為4200元/平方米,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210元/平方米,再在四個空角上鋪草坪,造價為80元/平方米.
(1)設(shè)總造價為S元,AD的邊長為x米,DQ的邊長為y米,試建立S關(guān)于x的函數(shù)關(guān)系式;
(2)計劃至少要投入多少元,才能建造這個休閑小區(qū).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)等差數(shù)列的前項和為,數(shù)列的前項和為,下列說法錯誤的是( )
A. 若有最大值,則也有最大值
B. 若有最大值,則也有最大值
C. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)
D. 若數(shù)列不單調(diào),則數(shù)列也不單調(diào)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在高為6的等腰梯形中, ,且, ,將它沿對稱軸折起,使平面平面.如圖2,點為中點,點在線段上(不同于, 兩點),連接并延長至點,使.
(1)證明: 平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為打入國際市場,決定從兩種產(chǎn)品中只選擇一種進行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)
其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),為待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料價格決定,預計.另外,年銷售件產(chǎn)品時需上交萬美元的特別關(guān)稅.假設(shè)生產(chǎn)出來的產(chǎn)品都能在當年銷售出去.
(1)寫出該廠分別投資生產(chǎn)兩種產(chǎn)品的年利潤與生產(chǎn)相應產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并指明其定義域;
(2)如何投資才可獲得最大年利潤?請你做出規(guī)劃.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實數(shù)的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)f(x)=(a-x)|x|,常數(shù)a∈R,且關(guān)于x的不等式mx2+m>f[f(x)]對所有的x∈[-2,2]恒成立,則實數(shù)m的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點P到定點的距離比它到直線的距離小2,設(shè)動點P的軌跡為曲線C.
求曲線C的方程;
若直線與曲線C和圓從左至右的交點依次為A,B,C,D求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com