【題目】某住宅小區(qū)為了使居民有一個優(yōu)雅舒適的生活環(huán)境,計劃建一個八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個相同的矩形ABCD和EFGH構(gòu)成的面積為200平方米的十字型地域.現(xiàn)計劃在正方形MNPQ上建花壇,造價為4200元/平方米,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為210元/平方米,再在四個空角上鋪草坪,造價為80元/平方米.
(1)設(shè)總造價為S元,AD的邊長為x米,DQ的邊長為y米,試建立S關(guān)于x的函數(shù)關(guān)系式;
(2)計劃至少要投入多少元,才能建造這個休閑小區(qū).
【答案】(1);(2)118000元
【解析】
(1)根據(jù)由兩個相同的矩形ABCD和EFGH構(gòu)成的十字形地域,四個小矩形加一個正方形面積共為200平方米得出AM的函數(shù)表達(dá)式,最后建立建立S與x的函數(shù)關(guān)系即得;
(2)利用基本不等式求出(1)中函數(shù)S的最小值,并求得當(dāng)x取何值時,函數(shù)S的最小值即可.
(1)由題意,有AM=,由AM>0,有0<x<10;
則S=4200x2+210(200-x2)+80×2×;
S=4200x2+42000-210x2+=4000x2++38000;
∴S關(guān)于x的函數(shù)關(guān)系式:
S=4000x2++38000,(0<x<10);
(2)S=4000x2++38000≥2+38000=118000;
當(dāng)且僅當(dāng)4000x2=時,即x=時,∈(0,10),S有最小值;
∴當(dāng)x=米時,Smin=118000元.
故計劃至少要投入118000元,才能建造這個休閑小區(qū).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和.
若三角形的三邊長分別為,,,求此三角形的面積;
探究數(shù)列中是否存在相鄰的三項(xiàng),同時滿足以下兩個條件:此三項(xiàng)可作為三角形三邊的長;此三項(xiàng)構(gòu)成的三角形最大角是最小角的2倍若存在,找出這樣的三項(xiàng),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在30天內(nèi)每件的銷售價(元)與時間(天)的函數(shù)關(guān)系如圖表示,該商品在30天內(nèi)日銷售量(件)與時間(天)之間的關(guān)系為函數(shù).
(1)根據(jù)提供的圖像,寫出商品每件的銷售價格與時間的函數(shù)關(guān)系式;
(2)若已知,求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天。(日銷售金額=每件的銷售價格×日銷售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①命題“x∈R,cosx>0”的否定是“x0∈R,cosx0≤0”;
②若0<a<1,則函數(shù)f(x)=x2+ax-3只有一個零點(diǎn);
③函數(shù)y=2sinxcosx在上是單調(diào)遞減函數(shù);
④若lga+lgb=lg(a+b),則a+b的最小值為4.
其中真命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,,記.
(1)求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,若函數(shù)沒有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù).
(1)求函數(shù)的極值;
(2)設(shè)函數(shù),若存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),求:
(1)函數(shù)的圖象在點(diǎn)(0,-2)處的切線方程;
(2)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別,過的直線l交橢圓于A,B兩點(diǎn),若的最大值為5,則b的值為( )
A. 1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線的焦點(diǎn)作直線交拋物線于,兩點(diǎn),若,則的值為( )
A. 10 B. 8 C. 6 D. 4
【答案】B
【解析】
根據(jù)過拋物線焦點(diǎn)的弦長公式,利用題目所給已知條件,求得弦長.
根據(jù)過拋物線焦點(diǎn)的弦長公式有.故選B.
【點(diǎn)睛】
本小題主要考查過拋物線焦點(diǎn)的弦長公式,即.要注意只有過拋物線焦點(diǎn)的弦長才可以使用.屬于基礎(chǔ)題.
【題型】單選題
【結(jié)束】
10
【題目】已知橢圓: 的右頂點(diǎn)、上頂點(diǎn)分別為、,坐標(biāo)原點(diǎn)到直線的距離為,且,則橢圓的方程為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com