如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4,BD=4,AB=2CD=8.
(1)設M是PC上的一點,證明:平面MBD⊥平面PAD;
(2)當M點位于線段PC什么位置時,PA∥平面MBD?
(3)求四棱錐P-ABCD的體積.
(1)見解析(2)M點位于線段PC靠近C點的三等分點處時(3)24.
【解析】(1)證明:在△ABD中,
∵AD=4,BD=4,AB=8,∴AD2+BD2=AB2.
∴AD⊥BD.
又平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,BD?平面ABCD,
∴BD⊥平面PAD.
又BD?平面MBD,∴平面MBD⊥平面PAD.
(2)當M點位于線段PC靠近C點的三等分點處時,
PA∥平面MBD.
證明如下:連接AC,交BD于點N,連接MN.
∵AB∥DC,∴四邊形ABCD是梯形.
∵AB=2CD,
∴CN∶NA=1∶2.
又∵CM∶MP=1∶2,∴CN∶NA=CM∶MP,∴PA∥MN.
∵MN?平面MBD,PA?平面MBD,∴PA∥平面MBD.
(3)過點P作PO⊥AD交AD于O,
∵平面PAD⊥平面ABCD,∴PO⊥平面ABCD.
即PO為四棱錐P-ABCD的高.
又△PAD是邊長為4的等邊三角形,∴PO=×4=2.
在Rt△ADB中,斜邊AB上的高為=2,此即為梯形ABCD的高.
梯形ABCD的面積SABCD=×2=12.
四棱錐P-ABCD的體積VP-ABCD=×12×2=24.
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試選擇填空限時訓練2練習卷(解析版) 題型:選擇題
已知雙曲線的一個焦點與拋物線x2=20y的焦點重合,且其漸近線的方程為3x±4y=0,則該雙曲線的標準方程為( )
A.=1 B. =1
C. =1 D. =1
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題5第3課時練習卷(解析版) 題型:解答題
設A,B分別是直線y=x和y=-x上的動點,且|AB|=,設O為坐標原點,動點P滿足=+.
(1)求點P的軌跡方程;
(2)過點(,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點P的軌跡的相交弦分別為CD,EF,設CD,EF的弦中點分別為M,N,求證:直線MN恒過一個定點.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題5第1課時練習卷(解析版) 題型:解答題
如圖所示,已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過點A(4,1).
(1)求圓C1的方程;
(2)若圓C2與圓C1關于直線l對稱,點B、D分別為圓C1、C2上任意一點,求|BD|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題5第1課時練習卷(解析版) 題型:選擇題
已知圓心(a,b)(a<0,b<0)在直線y=2x+1上的圓,其圓心到x軸的距離恰好等于圓的半徑,在y軸上截得的弦長為2,則圓的方程為( )
A.(x+2)2+(y+3)2=9 B.(x+3)2+(y+5)2=25
C.(x+6)2+2= D.2+2=
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題4第2課時練習卷(解析版) 題型:解答題
已知四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)求證:BE∥平面PDA;
(2)若N為線段PB的中點,求證:NE⊥平面PDB.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題4第2課時練習卷(解析版) 題型:選擇題
已知異面直線a,b分別在平面α,β內(nèi),且α∩β=c,那么直線c一定( )
A.與a,b都相交
B.只能與a,b中的一條相交
C.至少與a,b中的一條相交
D.與a,b都平行
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題3第3課時練習卷(解析版) 題型:解答題
某工業(yè)城市按照“十二五”(2011年至2015年)期間本地區(qū)主要污染物排放總量控制要求,進行減排治污.現(xiàn)以降低SO2的年排放量為例,原計劃“十二五”期間每年的排放量都比上一年減少0.3萬噸,已知該城市2011年SO2的年排放量約為9.3萬噸.
(1)按原計劃,“十二五”期間該城市共排放SO2約多少萬噸?
(2)該城市為響應“十八大”提出的建設“美麗中國”的號召,決定加大減排力度.在2012年剛好按原計劃完成減排任務的條件下,自2013年起,SO2的年排放量每年比上一年減少的百分率為p,為使2020年這一年SO2的年排放量控制在6萬噸以內(nèi),求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪專題復習與測試專題2第3課時練習卷(解析版) 題型:選擇題
下面是關于復數(shù)z=的四個命題:
p1:|z|=2,p2:z2=2i,
p3:z的共軛復數(shù)為1+i,p4:z的虛部為-1.
其中的真命題為( )
A.p1,p3 B.p1,p2
C.p2,p4 D.p3,p4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com