【題目】在直角坐標(biāo)系中,以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為, 是曲線與直線: ()的交點(diǎn)(異于原點(diǎn)).
(1)寫出, 的直角坐標(biāo)方程;
(2)求過點(diǎn)和直線垂直的直線的極坐標(biāo)方程.
【答案】(1)曲線的直角坐標(biāo)方程為.曲線: ()的直角坐標(biāo)方程為.(2).
【解析】試題分析:(1)利用,即可得的直角坐標(biāo)方程,由直線: ,故原點(diǎn),知斜率為1,進(jìn)而得方程;
(2)聯(lián)立解得或,由垂直得直線的斜率為-1,進(jìn)而得直角坐標(biāo)方程,換為極坐標(biāo)方程即可.
試題解析:(1)由,得,則.
即,
即曲線的直角坐標(biāo)方程為.
曲線: ()的直角坐標(biāo)方程為.
(2)聯(lián)立解得或
故點(diǎn)的坐標(biāo)為,
所以過點(diǎn)和直線垂直的直線的直角坐標(biāo)方程為,即,
化為極坐標(biāo)方程是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為常數(shù)).
(Ⅰ) 函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象相切,求實(shí)數(shù)的值;
(Ⅱ) 若, ,且,都有成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“雙11”前夕,某市場(chǎng)機(jī)構(gòu)隨機(jī)對(duì)中國(guó)公民進(jìn)行問卷調(diào)查,用于調(diào)研“雙11”民眾購(gòu)物意愿和購(gòu)物預(yù)計(jì)支出狀況. 分類統(tǒng)計(jì)后,從有購(gòu)物意愿的人中隨機(jī)抽取100人作為樣本,將他(她)們按照購(gòu)物預(yù)計(jì)支出(單位:千元)分成8組: [0, 2),[2, 4),[4, 6),…,[14, 16],并繪制成如圖所示的頻率分布直方圖,其中,樣本中購(gòu)物預(yù)計(jì)支出不低于1萬元的人數(shù)為a.
(Ⅰ) (i)求a的值,并估算這100人購(gòu)物預(yù)計(jì)支出的平均值;
(ii)以樣本估計(jì)總體,在有購(gòu)物意愿的人群中,若至少有65%的人購(gòu)物預(yù)計(jì)支出不低于x千元,求x的最大值.
(Ⅱ) 如果參與本次問卷調(diào)查的總?cè)藬?shù)為t,問卷調(diào)查得到下列信息:
①參與問卷調(diào)查的男女人數(shù)之比為2:3;
②男士無購(gòu)物意愿和有購(gòu)物意愿的人數(shù)之比是1:3,女士無購(gòu)物意愿和有購(gòu)物意愿的人數(shù)之比為1:4;
③能以90%的把握認(rèn)為“雙11購(gòu)物意愿與性別有關(guān)”,但不能以95%的把握認(rèn)為“雙11購(gòu)物意愿與性別有關(guān)”.
根據(jù)以上數(shù)據(jù)信息,求t所有可能取值組成的集合M.
附: ,其中.
獨(dú)立檢驗(yàn)臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-1.(n∈N*)
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn=an,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)時(shí)代的進(jìn)步,流量成為手機(jī)的附帶品,人們可以利用手機(jī)隨時(shí)隨地的瀏覽網(wǎng)頁,聊天,看視頻,因此,社會(huì)上產(chǎn)生了很多低頭族.某研究人員對(duì)該地區(qū)18∽50歲的5000名居民在月流量的使用情況上做出調(diào)查,所得結(jié)果統(tǒng)計(jì)如下圖所示:
(Ⅰ)以頻率估計(jì)概率,若在該地區(qū)任取3位居民,其中恰有位居民的月流量的使用情況
在300M∽400M之間,求的期望;
(Ⅱ)求被抽查的居民使用流量的平均值;
(Ⅲ)經(jīng)過數(shù)據(jù)分析,在一定的范圍內(nèi),流量套餐的打折情況與其日銷售份數(shù)成線性相關(guān)
關(guān)系,該研究人員將流量套餐的打折情況與其日銷售份數(shù)的結(jié)果統(tǒng)計(jì)如下表所示:
折扣 | 1折 | 2折 | 3折 | 4折 | 5折 |
銷售份數(shù) | 50 | 85 | 115 | 140 | 160 |
試建立關(guān)于的的回歸方程.
附注:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在棱錐中, 為矩形, 面, , 與面成角, 與面成角.
(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請(qǐng)說明理由;
(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有m個(gè)()實(shí)數(shù),它們滿足下列條件:①,
②記這m個(gè)實(shí)數(shù)的和為,
即.
(1)若,證明: ;
(2)若m=5,滿足題設(shè)條件的5個(gè)實(shí)數(shù)構(gòu)成數(shù)列.設(shè)C為所有滿足題設(shè)條件的數(shù)列構(gòu)成的集合.集合,求A中所有正數(shù)之和;
(3)對(duì)滿足題設(shè)條件的m個(gè)實(shí)數(shù)構(gòu)成的兩個(gè)不同數(shù)列與,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}為等比數(shù)列, 公比為 為數(shù)列{an}的前n項(xiàng)和.
(1)若求;
(2)若調(diào)換的順序后能構(gòu)成一個(gè)等差數(shù)列,求的所有可能值;
(3)是否存在正常數(shù),使得對(duì)任意正整數(shù)n,不等式總成立?若存在,求出的范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若函數(shù)y=h(x)的單調(diào)減區(qū)間是,求實(shí)數(shù)a的值;
(2)若f(x)≥g(x)對(duì)于定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com